

UV LF at $z \le 1$, from XMM-OM and Swift-UVOT

Monu Sharma

Mullard Space Science Laboratory, University College London

and Mat Page, Alice Breeveld, Alice Matthews@ MSSL & Ignacio Ferreras @ IAC

Context

XMM-OM UVW1

da Cunha et al. 2008

UV Selection

 $-27^{\circ}35'$

UV LF @ z = 0.6-1.2

$$\Phi(L)dL = \Phi_* \left(\frac{L}{L_*}\right)^{\alpha} exp\left(-\frac{L}{L_*}\right) \frac{dL}{L_*}$$
$$\frac{L}{L_*} = 10^{-0.4(M-M_*)}$$

 $\Phi(M)dM = 0.4 \ln 10\Phi_* 10^{-0.4(M-M_*)(\alpha+1)} e^{-10^{-0.4(M-M_*)}} dM$

UV LF @ z = 0.6-1.2

$\langle z \rangle$	$\phi^*/10^{-3}$	M^*	α	$ ho / 10^{26}$
	(Mpc^{-3})			$({\rm erg} {\rm s}^{-1} {\rm Hz}^{-1} {\rm Mpc}^{-3})$
0.7	$12.73^{+2.03}_{-2.25}$	$-18.84_{-0.15}^{+0.14}$	$-1.10^{+0.19}_{-0.18}$	$2.02^{+0.26}_{-0.18}$
1.0	$4.26^{+1.18}_{-1.12}$	$-19.64_{-0.18}^{+0.16}$	$-1.56^{+0.19}_{-0.18}$	$2.63^{+1.04}_{-0.55}$
0.7	$5.04_{-1.13}^{+0.76}$	$-19.12_{-0.23}^{+0.19}$	$-1.36\substack{+0.46\\-0.45}$	$1.34^{+1.46}_{-0.49}$
1.0	$1.82^{+0.36}_{-0.47}$	$-19.72_{-0.27}^{+0.23}$	$-1.40\substack{+0.60\\-0.56}$	$0.85\substack{+1.15 \\ -0.36}$

UV LF shape @ z = 0.6-1.2

Deviations from the Schechter shape suggest scenarios such as the absence of dust attenuation, amplified star formation efficiency, a top-heavy IMF, the emergence of AGN, non- Λ CDM cosmologies (Ferrara et al., 2023; Ziparo et al., 2023; Boylan-Kolchin, 2023; Wang, et al., 2024).

UV LF @ z = 0.6-1.2

UV Selection

UV LF @ z = 0.6-1.2

$\langle z \rangle$	$\phi^*/10^{-3}$	M^*	α	$ ho / 10^{26}$
	(Mpc^{-3})			$({\rm erg} {\rm s}^{-1} {\rm Hz}^{-1} {\rm Mpc}^{-3})$
0.7	$12.73^{+2.03}_{-2.25}$	$-18.84_{-0.15}^{+0.14}$	$-1.10^{+0.19}_{-0.18}$	$2.02^{+0.26}_{-0.18}$
1.0	$4.26^{+1.18}_{-1.12}$	$-19.64_{-0.18}^{+0.16}$	$-1.56^{+0.19}_{-0.18}$	$2.63\substack{+1.04 \\ -0.55}$
0.7	$5.04_{-1.13}^{+0.76}$	$-19.12_{-0.23}^{+0.19}$	$-1.36\substack{+0.46\\-0.45}$	$1.34^{+1.46}_{-0.49}$
1.0	$1.82^{+0.36}_{-0.47}$	$-19.72_{-0.27}^{+0.23}$	$-1.40^{+0.60}_{-0.56}$	$0.85\substack{+1.15 \\ -0.36}$

UV LF @ z = 0.6-1.2

$\langle z \rangle$	$\phi^*/10^{-3}$	M^*	α	$ ho / 10^{26}$
	$({\rm Mpc}^{-3})$			$({\rm erg} {\rm s}^{-1} {\rm Hz}^{-1} {\rm Mpc}^{-3})$
0.7	$12.73^{+2.03}_{-2.25}$	$-18.84_{-0.15}^{+0.14}$	$-1.10^{+0.19}_{-0.18}$	$2.02^{+0.26}_{-0.18}$
1.0	$4.26^{+1.18}_{-1.12}$	$-19.64\substack{+0.16\\-0.18}$	$-1.56^{+0.19}_{-0.18}$	$2.63\substack{+1.04 \\ -0.55}$
0.7	$5.04_{-1.13}^{+0.76}$	$-19.12^{+0.19}_{-0.23}$	$-1.36\substack{+0.46\\-0.45}$	$1.34^{+1.46}_{-0.49}$
1.0	$1.82^{+0.36}_{-0.47}$	$-19.72_{-0.27}^{+0.23}$	$-1.40\substack{+0.60\\-0.56}$	$0.85\substack{+1.15 \\ -0.36}$

XMM-OM UVM2+ Swift UVOT

da Cunha et al. 2008

XMM-OM UVM2+ Swift UVOT

da Cunha et al. 2008

`1'

UV LF @ z = 0.4-0.6

13Hr (Page et al. 2024, sub)

Summary

- The LF shape at redshifts 0.5, 0.7, 1.0 is consistent with the Schechter form.
- The characteristic magnitudes are fainter than previous studies, implying possible AGN contamination.
- Galaxy mergers at scales smaller compared to photometric apertures can cause artificial flattening at the bright end of the LFs.
- Combining OM and UVOT data showing promise for extending the UV LF studies to lower redshifts. Stay Tuned!
- arXiv:2106.08200, arXiv:2203.03563, arXiv:2212.00215

