ULTRASAT: A Wide-Field UV Space Telescope

Revolutionizing our view of the transient universe

PI	E. Waxman (WIS)	Funding	Industry
Program Manager	U. Netzer (ISA/WIS)	partners	partners
Deputy PI	A. Gal-Yam (WIS)	ISA	IAI
Camera PI	D. Berge (DESY)		
Project Scientist	Y. Shvartzvald (WIS)	WIS	Elop
Science Lead	E. Ofek (WIS)	NASA	Tower
Payload Lead	S. Ben-Ami (WIS)	DESY	//.//
NASA Project Scientist	J. Rhoads (NASA)	0.1.1.1.	

Yossi Shvartzvald | Weizmann Institute of Science

ULTRASAT: A Wide-Field UV Space Telescope

Revolutionizing our view of the transient universe

PI	E. Waxman (WIS)	Funding	Industry
Program Manager	U. Netzer (ISA/WIS)	partners	partners
Deputy PI	A. Gal-Yam (WIS)	ISA	IAI
Camera PI	D. Berge (DESY)		
Project Scientist	Y. Shvartzvald (WIS)	WIS	Elop
Science Lead	E. Ofek (WIS)	NASA	Tower
Payload Lead	S. Ben-Ami (WIS)	DESY	//.//
NASA Project Scientist	J. Rhoads (NASA)	0.1.1.1.	

Yossi Shvartzvald | Weizmann Institute of Science

The study of Transient Cosmic Phenomena is taking Center Stage

An exciting frontier, Many fundamental open questions

Sources	Open questions
Collisions and mergers of stars	 Where in the Universe are the heavy elements, from Iron to Gold and Uranium, produced? What are the properties of matter at nuclear density? How do black holes form? What is the current expansion rate of the Universe?
Explosive deaths of massive stars	 How do massive stars explode and affect their environment? What is the pre-explosion evolution & mass loss?
Tidal disruption of stars (TDEs) by super-massive black holes (SMBH)	 What is the SMBH "demographics"? How do they affect their environment? How is mass accreted onto BH?

Technology developments enable:

- Wide Field of View surveys:
 Optical (LSST/Rubin), Radio (LOFAR, SKA),
 X/γ-ray (Fermi, SVOM; HAWC, CTA, LHAASO).
- Non-EM ("Multi-Messenger Astronomy") detectors: Gravitational Waves (LIGO, Virgo, KAGRA)
 v Neutrinos (IceCube, KM3NeT)

Missing: UV

ULTRASAT's uniqueness

Key Properties

- Very large, 200 deg², field of view
- High UV (230-290nm) sensitivity: 1.5 x 10⁻³ ph/cm² s (900s, 5σ) [m = 22.5]
- Geostationary orbit

Key Capabilities

- Monitor an unprecedentedly large volume of the Universe
- New window in wavelength (NUV) and in cadence (minutes - months)

Transient detection rates of leading surveys

Shvartzvald+ 2023

Page

- Real-time alerts to ground/space-based telescopes (GEO orbit), initiate world-wide follow-ups
- ToO: Instantaneous >50% of the sky in <15 min for >3 hr

ULTRASAT - Key Science Goals

<u>EM counterpart to GW sources</u> Starting 2027: ~ 10's NS-NS merger events per year ~100 deg² error boxes <u>ULTRASAT will provide:</u>

- Fast localization of NS-NS/BH mergers Rapid, <15min, access to 50% of the sky Cover GW error box in a single image
- UV light curves to measure ejecta properties

Death of massive stars

- High quality early high cadence UV data Rapid alerts for follow-ups, 100's of SNe including rare types
- Measure properties of SNe progenitors
- Map progenitors to SNe types
- Reveal pre-explosion evolution and mass loss

ULTRASAT: A broad science impact

	ULTR	4
X	SKYLIGHT	TO SPACE

Source Type	# Events per	Science Impact
	3 yr mission	5.00
Supernovae		
Shock break-out and	> 40	Understand the explosive death
Early (shock cooling) of core collapse SNe	> 500	of massive stars
Superluminous SNe	> 250	Early evolution, shock cooling emission
Type Ia SNe	> 1000	Discriminate between SD and DD progenitors, dust reddening
Compact Object Transients		
Emission from Gravitational Wave events:	~ 25	Constrain the physics of the sources of
NS-NS and NS-BH		gravitational waves
Tidal disruption events	> 300 (high-cadence)	Accretion physics, black hole demographics
	> 4500 (low-cadence)	
Quasars and Active Galactic Nuclei		
Continuous UV lightcurves	> 7500	Accretion physics, BLR reverberation mapping, lensed quasars
AGN-related flares & transients	> 100	Accretion physics
Stars & Exoplanets		
Active & Flaring stars	$> 4 \times 10^5$	Planet habitability, high-energy flare frequency,
		stellar magnetic structure, gyrochronology, magnetospheres
White dwarfs	$> 3 \times 10^4$	Planetary systems, debris accretion, rotation-related variability
RR Lyrae	> 1000	Pulsation physics
Nonradial hot pulsators, e.g., α Cyg,	> 250	Asteroseismology
δ Scuti, SX Phe , β Cep types		
Eclipsing binaries	> 400	Chromosphere and eclipse mapping
Galaxies and Clusters		
All Sky Survey – galaxies	$> 10^{8}$	Galaxy Evolution, star formation rate
Gamma Ray Bursts		
GRBs occurring in-field	~ 30	Prompt emission & afterglow physics, dust reddening
Orphan Afterglows	> 30	Fireball Γ and opening angle distributions
Solar System		
Asteroids and other small bodies	$> 10^4$	Asteroid classification, origin

פכון ויצמי למדע |

Shvartzvald+2023

Page 8

ULTRASAT implementation

GTO to Geo Orbit

- Launch to Geo-Transfer-Orbit (GTO)
- GTO to Geostationary (GEO) maneuvers
- Main Mission: 3-6 years

<u>GEO advantages</u>

- Continuous communication:
 - Real-time data download
 - Instantaneous slewing
- Sky accessibility
 - >50% of the sky at any given moment
- Avoiding O2 photo-dissociation line

ULTRASAT: Mission Profile

SURVEY (\rightarrow Key goal 2)

- High cadence 200 deg² with 5 min cadence (21 hr/day)
- Low cadence 8000 deg² with 4 day cadence (3 hr/day)
- Real-time data download and analysis -Alerts <15min of observations

TARGET OF OPPORTUNITY (ToO's; \rightarrow Key goal 1)

- Instantaneous >50% of the sky in <15 min for >3 h
- No limit on ToO number, except for max 25/yr with negative power balance (33%)
- Continuous transmission to the ground

UV ALL SKY MAP

- 3hr/day during the first 6 months
- 10x deeper than current state-of-the-art (GALEX) (>23.5 AB limiting mag @ |b|>30°)

Chromatic position-dependent PSF

Optimized for:

- ULTRASAT band: 230-290nm
- Central 170 deg²

For more details see: Ben-Ami+2022

Effective PSF

Source and position dependent

Limiting magnitude

• Source and position dependent

Background Noise

Source	Variance (e ⁻ /pix)
Zodiac (Survey)	27
Cerenkov (75%)	15
Stray light (max)	12
Dark current	12
Readout noise [^2]	6
Electronic Crosstalk	2
Gain	1
Quantum Yield	<1
Total	75

Shvartzvald+2023

Shvartzvald+ 2023

10

ULTRASAT: Science impact

Revolutionize our view of the hot transient Universe:

- Discovery volume 300 X GALEX
- Continuous (min-mon cadence) in a new window (NUV)
- Real-time alerts to ground/space-based telescopes

A broad impact:

GW sources, SNe, variable and flare stars, AGN, TDEs, compact objects, galaxies.

Groundbreaking science with an affordable satellite mission

