Starburst

Theoretical Spectra for Interpreting /UV Spectra from New, Large Telescopes

THE ASTROPHYSICAL JOURNAL LETTERS, 955:L35 (8pp), 2023 October 1

Bursty Star Formation Naturally Explains the Abundance of Bright Galaxies at Cosmic Dawn

Guochao Sun¹^(b), Claude-André Faucher-Giguère¹^(b), Christopher C. Hayward²^(b), Xuejian Shen^{3,4}^(b), Andrew Wetzel⁵^(b), and Rachel K. Cochrane²^(b)

TAKE-AWAY: Get your EUV-UV-Optical spectra from: https://www.as.arizona.edu/~hubeny/isochrones/

Sally Heap & Ivan Hubeny

26 October 2023

Rapidly rotating stars are hotter and more luminous than non-rotating stars

Credit: Geneva evolutionary tracks and isochrones

The spectral isochrones cover 200-10,000 Å at RP=20,000. The EUV spectrum can be used to predict the nebular & ISM spectrum. The ionizing power drops off in only a few million years

Winds of younger clusters have higher \dot{M} and V_{∞}

The library has NLTE photospheric spectra of rotating & non-rotating stars

The spectral isochrones enable you to watch evolution of the line spectrum

The computed spectra can be compared to observed spectrum (black),

e.g. HST/COS spectrum of NGC 5253 cluster #5

