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Introduction

* Neutron stars (NSs) are compact objects with a rich
phenomenology: isolated sources, binary systems, fast
radio bursts, gamma ray bursts, gravitational wave
emission, etc.

* The density in the interior of NSs can exceed several times

the nuclear saturation density py = 3x10** g cm™3.

* Radius and mass measurements of neutron stars can allow
us both to infer the equation of state (EOS) of super-dense
matter and to establish constraints on fundamental physics.

DENSE MATTER

Neutron stars get denser with depth. Although
researchers have a good sense of the composition
of the outer layers, the ultra-dense inner core
remains a mystery.

*

1. Atmosphere Mostly hydrogen and helium
2. Outer crust Atomic nuclei and free electrons

3. Inner crust Free neutrons and electrons,
heavier atomic nuclei

4. Outer core Neutron-rich quantum liquid

5.Innercore Unknown, ultra-dense matter




Millisecond Pulsars

* Millisecond pulsars (MSPs) are fast spinning neutron stars,
with typical periods of few millisecond.

* They are thought to have been spun up by accretion of
matter from a binary companion.

PSR J0437-4715 is the brightest and nearest millisecond
pulsar, at a well-measured distance d = 156.79 + 0. 25 pc.
In addition, this MSP is in a binary system (with a white dwarf
companion), which has allowed to measure its mass with
high precision: M = 1.44 + 0.07 M

e Ultraviolet and X-ray observations have revealed thermal
emission from the entire surface of PSR J0437-4715.

XMM-Newton observation
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Spectrum of PSR J0437-4715
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Atmospheric emission

 Thermal radiation reprocessed by an atmosphere.

 Stratified atmosphere composition.
* Light elements on top.
* Heavy elements sink to deep layers.

* Key simplification: magnetic field does not affect
radiative transfer.
* Magnetic field B~108 G
* Cyclotron energy E.~1 eV
e Temperature kT~20 eV > E,
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* Plane parallel atmosphere, partially ionized gas, in
hydrostatic equilibrium
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* Opacity tabled and ionization state from Los Alamos
National Laboratory.
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1. Initial temperature: grey atmosphere.
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Spectral Fit PSR J0437-4715

* We modelled the cool thermal component | | [
. eff — <
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(ROSAT), considering realistic atmosphere Nyt = 1.4'x 10% cm~2

models of neutron stars for H, He, Fe
composition, as well as blackbody emission
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* We perform a MCMC analysis considering four —1L0F

parameters: radius, temperature, dust
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extinction, and neutral hydrogen column —Hor

density.
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* We found that a hydrogen atmosphere yields
the best spectral fits. o5l
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Spectral Fit PSR J0437-4715

TS = (23+0.1)x10°K
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Using a prior:
E(B-V) =0.002 £ 0.014
(Lallement et al. 2018)
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Updated work on PSR J0437-4715
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Preliminary work by PhD student Pierre Stammler
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Excluding some UV points

Including prior on distance: d = 156.79 + 0. 25 pc /g
Including prioron mass: M = 1.44 + 0.07 M, %0
Improving the modelling of hot spots. 2

Updated prior on redenning.
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Mass (Mo)

2.50

2.25 A

2.00 A

LS

1.50 +

Ld5

1.00 A

0.75 A

0.50

Updated work on PSR J0437-4715

Radius (km)

Rns =12.3 £ 0.9 km
i.e. uncertainties: + 7.3 %
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Conclusions

* Combined ultraviolet and X-ray observations of MSPs are promising to constrain the radius and
determine the equation of state of dense matter.

» Besides PSR J0437-4715, few pulsar have a detected T~10° K surface emission (Talk by Luis
Rodriguez).

* Currently, only HST has the required capabilities to observe this kind of sources in the far
ultraviolet.

Thanks!



