

FACULTY OF SCIENCE Kepler Center for Astro and Particle Physics Institute for Astronomy und Astrophysics · Department for Astronomy

Microchannel Plate Detectors

for UV Astronomy

S. Diebold, J. Barnstedt, L. Conti H.R. Elsener (Empa), D. Schaadt (TUC), B. Stelzer, K. Werner

NUVA, eMeeting 2023

Oct 26, 2023

Outline

Detector Technology

Use cases and trade-offs for solid-state sensors vs. MCP detectors in the UV

MCP Detector Development in Tübingen

Status and mission prospects

Principle of microchannel plate detectors for the UV

EUV + FUV + NUV

Fhoto

FUV > 110 nm + NUV

Semitransparent mode UV light Reflection Absorption **Buffer layer Photocathode** e- transport losses Surface recombination Photoelectron Transmission losses OAR losses MCP channels

Considerations for solid-state (silicon) sensors in the UV

Trade-off between detector technologies

Comparison MCP vs. silicon (CCD, CMOS) technology

- Single photon-counting (time resolution <1 ms)
- No readout noise, but finite dark current
- Lower quantum efficiency (QE), particularly in the NUV
- Solar-/visible-blind (reduces straylight/background issues)
- High voltage required, but no cooling necessary

Suggested use cases for MCP detectors

- Small to medium class missions
 - less photons
 - less stable platform
 - less funds
 - higher potential for straylight issues
- Need for flatter response than AR coated Si
- FUV (90 120 nm)
- Larger "pixel" size affordable

Simulations by J. Vallerga, SSL

UV MCP detector development at IAAT

Goals and realization

- Enhanced QE and adjustable band pass \rightarrow (AI)GaN photocathode
- − Higher count rate and lower dark current
 → FPGA-based electronics, ALD MCPs
- Enhanced lifetime
 - \rightarrow ALD MCPs, XS anode
- Low power consumption (<15 W)
 - → BEETLE pre-amp chip, FPGA-based readout
- Lower mass (3 5 kg) + smaller envelope
 - \rightarrow Highly integrated sealed tube/lightweight door mechanism

TINI – Tuebingen IIA Nebula Explorer

The TINI instrument

- Imaging spectroscopy in the FUV (90 180 nm)
- Wide FoV 0.7° with 13" spatial resolution
- 12U cubesat package, planned as piggyback

Diebold+, Proc. SPIE, 2022

Mission situation

- Indian led mission with German contribution
- PI: formerly J. Murthy, since 2022 R. Mohan
- Proposed to ISRO in 2019 and 2022, no decision yet
- Detector development funded by DLR, but AIV only with launch perspective

Hardware status

- Prototype instrument completed except for the final grating
- Detector prototype currently finalized

SIRIUS – a mission for the EUV

Proposed as ESA S and F class mission

- UK-led (PI: M. Barstow)
- Contributions from Belgium, Germany, Spain
- Slitless, narrow-band EUV spectroscopy

Upcoming UKSA call for a bi-lateral mission

- Expected in late 2023
- Interest by the SIRIUS F2 instrument team

Planned contribution from IAAT

- Open MCP detector (GaN or KBr, need for photon-counting)
- Lyman-Alpha blocking filter

Wavelength (Angstroms)

CAFE + LyRIC

Missions proposed to CAS

- PI: Li Ji, Purple Mountain Observatory, Nanjing
- Both instruments are tailored for IAAT MCP detectors

LyRIC (Lyman uv Radiation from Interstellar and Circum-galactic medium)

- Long-slit spectrograph for the FUV range (91 115 nm)
- Designed for operation from the Chinese Space Station

CAFE (Census of warm-hot intergalactic medium, Accretion, and Feedback Explorer)

- Imaging spectroscopy in the FUV
- Two narrow channels around OVI (~103 nm) and LyA (~121 nm)

Ji+, PMO, Proc. SPIE, 2020

NUVA eMeeting, Oct 26, 2023

9 | S. Diebold | MCP Detectors for UV Astronomy

ESBO – European Stratospheric Balloon Observatory

ESBO-DS

- EU-Horizon funded design study concluded in 2021
- STUDIO instrument (Stratospheric UV Demonstrator of an Imaging Observatory)
- Looking for funding opportunities for a commissioning flight and science flights

Science goals for the STUDIO instrument

- Search for variable hot compact stars
- Detection of flares from cool dwarf stars
- Study of solar system objects

Pahler+, IRS, Proc. SPIE, 2022

Conclusions

Detector technology

- MCP was the dominating technology in the whole UV range for decades
- Solid-state silicon technology caught-up and took over for several use-cases
- Still a careful technology trade-off is necessary to reach an optimal SNR

MCP detector development at IAAT

- Semi-transparent (AI)GaN photocathodes are routinely produced, optimization is ongoing
- Opaque (AI)GaN photocathodes on MCPs under development
- First sealed MCP detector head with XS anode successfully produced
- Readout electronics hardware for the XS anode is fully completed

Mission prospects

- Several European and international projects are on the horizon (TINI, SIRIUS, LyRIC, CAFE, ESBO ...)

