ULTRAVIOLET ASTRONOMY IN THE XXI CENTURY

e-Workshop 2020 – October 27-29

Downloaded from the JCUVA server hosting the workshop

SK-67 167 (O4 Inf+)

The ULLYSES Director's Discretionary Program

Charting Young Stars' Ultraviolet Light with Hubble

ULLYSES at a glance

- ULLYSES = Ultraviolet Legacy Library of Young Stars as Essential Standards
- Director's Discretionary Hubble program to obtain a spectroscopic reference sample of young low and high mass stars – Largest HST program ever executed (~1000 orbits)
- The scientific framework of the program was designed by the community, via a UV Legacy Working Group and the program is being implemented by a dedicated team at STScI

~500 orbits to obtain a spectroscopic library and time monitoring of T Tauri stars (younger than 10 Myr, mass < 1 M_o)

A Spectroscopic Survey of High Mass Stars

✓ Massive Stars

- o Stellar winds and abundances
- o lonizing radiation
- o Spectral templates for population synthesis

- 🗸 ISM
 - o Chemical abundances
 - o Depletions on dust

- ✓ CGM
- o Kinematics
- o Metallicity
- o Spatial distribution

STSCI SPACE TELESCOPE SCIENCE INSTITUTI

A Spectroscopic Survey of Young Low Mass Stars

✓ T Tauri Stars

- o Accretion physics
- o UV radiation and impact on disk evolution and planet composition and atmospheric escape
- o Time monitoring component for 4 targets (100 orbits) to study accretion variability

ULLYSES

Overview of ULLYSES target sample

- Targets were released to the community in early 2020
- ~330 (including 90 archival) targets will be included in the ULLYSES database
- Numerous coordinated and follow-up observations planned by community (see C. Espaillat's talk):
 - o Massive stars: VLT X-Shooter
 - o T Tauri stars:
 - ✓ VLT X-Shooter
 - ✓ XMM-Newton and ISS/NICER
 - ✓ Magnetic mapping with spectro-polarimetry (CFHT)
 - ✓ IR spectroscopy (IRTF)
 - Photometric monitoring with LCOGT and other ground-based observatories

Region	targets	targets	orbits
LMC	98	34	225
SMC	65	41	220
Sextans-A	3	6	~37
NGC 3109	3	0	~15
Lupus	27	4	142
Cha I	16	3	97
ϵ Cha	2	1	22
η Cha	5	3	20
Orion	10	0	45
σOri	3	0	13
CrA	2	0	10
TW Hydrae	1	0	2
Monitoring T Tauri Stars	4	0	100
TOTAL	241	92	948

ULLYSES

AR

Region

✓ TESS

Overview of massive stars

E7

(B0-1 la)

E20

Target Selection – Sampling of SpT/LC

• 4-5 O I-V per SpT/LC bin

- 2-4 B2-B4 I per bin
- 2-4 BO-B1 I-V stars per bin
- 1-2 B5-9 l per bin

Target Selection – T Tauri Star Sample

- 67 targets in 8 star-forming regions
- 355 orbits
- Complete sampling of mass and accretion rate 7

SF region	# of targets
Lupus	27
Cha I	16
εCha	2
η Cha	5
Orion	10
σOri	3
CrA	2
TWA	1

Target Selection – T Tauri Stars Monitored Over Time

- 4 T Tauri stars selected from time monitoring with HST
- Two epochs spaced out by 9-12 months, with 4 observations per rotation period for 3 4 10⁻¹¹
 periods during each epoch
- UV coverage 1400-3000 Å

Target	RA(J2000)	DEC(J2000)	Mass (M _{sun})	Radius (R _{sun})	Mass Accretion Rate (M _{sun} /yr)	Rotational Period (days)	A _v (mag)
BP Tau	04h19m15.86s	+29d06m27.2s	0.70 년	2.00 더	2.9E-08 [2]	8.19 🗹	0.51 🗹
GM Aur	04h55m10.98s	+30d21m59.1s	1.36 🗹	1.75 년	5.0e-9 ⊡	6.10 🗹	0.60 岱
TW Hya	11h01m51.95s	-34d42m17.7s	0.70 년	1.00 년	2.0E-09 🗹	3.57 🗹	0.00 년
RU Lup	15h56m42.31s	-37d49m15.47s	0.70 🗹	1.64 년	5.0E-08 🗹	3.71 🗹	0.07 년

Observing Strategy – LMC/SMC Massive stars

- FUV coverage from 1140 Å to 1800 Å with COS/G130M/1291
 + COS/G160M/1611, or STIS/E140M for brighter stars
- Coverage below 1150 Å with archival FUSE data or COS/G130M/1096 for O stars if cost is reasonable
- STIS/E230M/1978 for 09-B9 I
- STIS/E230M/2707 or COS/G185M/1953+1986 for B5-9 I

1	I	-	IV - V
O2-08	 COS/G130M/1291 + G160M/1611 or STIS/E140M FUSE or COS/G130M/1096 	 COS/G130M/1291 G160M/1611 or STIS/E140M FUSE or COS/G130M/1096 	 COS/G130M/1291 + G160M/1611 or STIS/E140M FUSE or COS/G130M/1096
09	 COS/G130M/1291 + G160M/1611 or STIS/E140M FUSE or COS/G130M/1096 STIS/E230M/1978 	 COS/G130M/1291 + G160M/1611 or E140M FUSE or COS/G130M/1096 	 COS/G130M/1291 + G160M/1611 or STIS/E140M FUSE or COS/G130M/1096
B0-B1.5	 COS/G130M/1291 + G160M/1611 or E140M STIS/E230M/1978 	 COS/G130M/1291 + G160M/1611 or STIS/E140M 	 COS/G130M/1291 + G160M/1611 or STIS/E140M
B2-B4	 COS/G130M/1291 + G160M/1611 or STIS/E140M STIS/E230M/1978 or COS/G185M/1921+195 3+1986 	Χ	X
B5-B9	 COS/G130M/1291 + G160M/1611 or STIS/E140M STIS/E230M/1978 or COS/G185M/1921+195 3+1986 STIS/E230M/2707 	Χ	X

Observing Strategy – T Tauri Stars

• Survey stars:

- Medium-resolution UV coverage 1140-1780
 Å with COS/G130M/1291 + COS/G160M/1611
- NUV coverage at low resolution with STIS/G230L
- o Optical-NIR with STIS G430L and G750L

• Monitoring stars:

- o COS G160M/1611
- o COS G230L/2635 + 2950

Observing Status

- Massive stars:
 - o LMC: 13 targets observed and 10 more will be observed by 10/31/2020
 - o SMC: 25 targets observed
 - o 65 fully archival targets in LMC+SMC combined
 - o Remainder of LMC/SMC and low metallicity targets will observed over Cycles 28 and 29
 - HST/WFC3 pre-imaging scheduled for October-November 2020 (NGC 3109) and March 2021 (Sextans A) F225W, F275W, F336W, F475W, F814W Spectroscopy with COS/G140L/800 will follow
- T Tauri stars:
 - o 13 Orion T Tauri stars to be observed in November-December 2020 in coordination with TESS
 - A fraction of T Tauri stars will be observed in coordination with TESS in March-June 2021 (the remainder will be observed at later dates)
 - o 4 monitoring T Tauri stars will be observed in spring-summer 2021 (epoch 1) and 2022 (epoch 2)
- Observing status and scheduled can be checked at https://ullyses.stsci.edu

Data Products – Overview

- High-Level Science Products (HLSPs):
 - ✓ STIS and COS calibrated pipeline products and acquisition images
 - \checkmark Co-added spectra for each grating setting
 - ✓ Spliced spectra (multiple grating settings, multiple instruments, e.g., FUSE + COS/STIS)
- Database
 - ✓ Repository of meta data that describes
 - New ULLYSES Data: coordinates, instrumental configurations, exposure times, etc.
 - Archival/Ancillary Data: archival HST and FUSE spectra; links to spectra from other facilities (e.g., VLT, LCOGT, XMM etc)
 - Targets: fundamental stellar parameters (with references)
 - ✓ Used to construct web interfaces and enable queries
 - Search form, filtering to refine queries, visual selection from interactive plots, API
- Quick-look tools: interactive plots of spectra with interactive S/N calculations
- Jupyter notebooks: demonstrate data handling and analysis techniques
- Website (<u>https://ullyses.stsci.edu</u>)

Data Products – Overview

- DR1 planned for November 5, 2020:
 - o LMC/SMC targets observed up to October 15, 2020 (including archival targets)
 - o Tabular search for targets
 - o Link to tar-ball for download
 - o No database yet
- DR2 planned for spring 2021
 - o Database with UI (form + table)
 - o All LMC/SMC targets observed to that point
 - o NGC 3109 Images and photometry
 - o HST spectra and LCOGT photometry for Orion T Tauri stars
- Quarterly data releases

Back-up slides

ULLYSES Core Implementation Team (CIT)

Julia Roman-Duval (CIT Lead)

Jo Taylor (DP Lead)

Travis Fischer (DP Deputy Lead)

Charles Proffitt (Observing Lead)

TalaWanda Monroe (Observing Deputy Lead)

Will Fischer **Alex Fullerton** (T Tauri Star Lead Expert) (Massive Star Lead Expert)

S

Alessandra Aloisi (Pre-imaging)

Allyssa Riley (DP)

Chris Britt

David Sahnow (Observing)

Ivo Busko (DP/software)

Richard Shaw (DP)

Svea Hernandez

(DP)

Ravi Sankrit (Observing)

(DP, software)

Linda Smith (Targets)

Sean Lockwood

(ETC, Obs)

Debopam Som

(Observing)

Tony Sohn (Observing)

Adric Riedel (Targets, DP)

Leonardo Ubeda (Website)

Dan Welty (Targets, Obs, DP)

Science Advisory Committee (SAC)

- SAC composition (Massive stars / T Tauri stars)
 - o Jean-Claude Bouret (Laboratoire d'Astrophysique de Marseille)
 - o Catherine Espaillat (Boston University)
 - o Chris Evans (UK Astronomy Technology Centre)
 - o Kevin France (University of Colorado Boulder)
 - o Miriam García (Centro de Astrobiología (CSIC-INTA))
 - o Chris Johns-Krull (Rice University)
 - o Derck Massa (Space Science Institute)
 - o Joan Najita (National Optical Astronomy Observatory)

Timeline and Milestones up to now

- June 2019: CIT and SAC assembled
- September 2019: Request for input from the community regarding target selection
- November 2019: T Tauri stars to be monitored over time and low-metallicity massive stars selected for observations released to the community
- February 18, 2020: Release of full target samples
- June 2020: First observations of LMC/SMC stars
- July 2020: Launch of website (ullyses.stsci.edu)
- August 2020: Beginning of LCOGT monitoring observations of Orion T Tauri stars

- November 5, 2020: First data release (LMC/SMC only)
- November-December 2020: HST observations of Orion T Tauri stars (with TESS, LCOGT)
- Spring 2021: DR2 (includes functional database and user interface this is a working goal)
- Spring-summer 2021: Epoch 1 of monitoring stars, and more survey CTTS
- Quarterly data releases through the end of the program