ULTRAVIOLET ASTRONOMY IN THE XXI CENTURY

e-Workshop 2020 – October 27-29

Downloaded from the JCUVA server hosting the workshop

TELLING THE STORY OF LIFE IN THE COSMOS THE LUVOIR OBSERVATORY CONCEPTS

AKI ROBERGE NASA GODDARD SPACE FLIGHT CENTER

5TH NUVA Workshop Oct. 29, 2020

WHAT IS LUVOIR ?

Large UV / Optical / Infrared Surveyor (LUVOIR) Space telescope concept with broad science capabilities Exoplanets, Solar System, Astrophysics

Far-UV to near-IR bandpass

Two architectures: 15-m (LUVOIR-A) and 8-m (LUVOIR-B) telescopes Serviceable and upgradable

Community-driven operations

"Space Observatory for the 21st Century" Ability to answer questions of the 2030s and beyond

EXOTIC WORLDS

THE SEARCH FOR LIFE

OUR DYNAMIC Solar System

COSMIC ORIGINS & THE ULTRA-FAINT UNIVERSE

Finding Earth-like planets and life would be a momentous achievement

Need space-based direct spectroscopy to do it for exoplanets around Sun-like stars

THE HABITABLE PLANET SURVEY OBSERVATIONS

High-contrast direct imaging of *hundreds of stars* with LUVOIR ECLIPS. Colors, orbits, & partial spectra for every habitable planet candidate

> Simulated high-contrast image of the Solar System at 12.5 pc with ECLIPS on LUVOIR-A

HOW MANY CANDIDATES DO WE NEED?

Are habitable planets common or rare?

Want order of magnitude increase in knowledge

Requirement : Measure frequency of habitable planets for values >10%

Ensures scientifically valuable null result

HOW MANY CANDIDATES FOR >10% FREQUENCY?

28 candidates

LUVOIR-B 8-m

Measure frequency of Earth-like planets if >10%

WHAT IF EARTH IS EVEN MORE RARE?

28 candidates

LUVOIR-B 8-m

Measure frequency of Earth-like planets if >10%

54 candidates

LUVOIR-A 15-m

Measure frequency of Earth-like planets if >5%

WHAT WOULD AN INHABITED EXOPLANET LOOK LIKE? Rayled Scatter Earth at 10 pc $\approx 30^{\text{th}}$ magnitude 1.5 O_3 H_2O O_2 CO CH_4 H_2O H_2O H_2O H_2O SNR = 8.5 in each bandpass - needed to *measure* molecules 0.5 1.0 1.5 Wavelength [µm]

DOZENS OF HABITABLE CANDIDATES, HUNDREDS OF PLANETS

For every exoEarth candidate, LUVOIR will observe >10x as many exotic exoplanets

COMPARATIVE EXOPLANETOLOGY

Cold to warm planets NUV / optical / NIR direct spectroscopy

Warm to hot planets Optical / NIR transit spectroscopy

Atmospheric escape FUV transit spectroscopy

EXOTIC WORLDS

THE SEARCH FOR LIFE

OUR DYNAMIC Solar System

COSMIC ORIGINS & THE ULTRA-FAINT UNIVERSE

IMAGINE SOLAR SYSTEM SCIENCE WITH LUVOIR ... PLUTO

LUVOIR-B (8 m)

LUVOIR-A (15 m)

Buie et al. 2010

Credit: NASA / New Horizons / M. Postman (STScI)

IMAGINE SOLAR SYSTEM SCIENCE WITH LUVOIR ... Far-UV hydrogen emission from Europa plumes

Roth et al. (2014)

14

EXOTIC WORLDS

THE SEARCH FOR LIFE

OUR DYNAMIC Solar System

COSMIC ORIGINS & THE ULTRA-FAINT UNIVERSE

SEEKING THE BUILDING BLOCKS OF GALAXIES

Dwarf galaxy

LUVOIR's **Deep Fields** – done in parallel with deep exoplanet observations – will reach the smallest mass scale of galaxy formation

Ultra-faint dwarf galaxy

z = 2 galaxy, 10⁶ solar masses (m_{AB} ~ 30)

With access to 1000-3000 Å, LUVOIR can map all phases of diffuse galactic gas over >80% of cosmic time

LUVOIR-A

15-m, on-axis telescope 120 segments, 1.223-m flat-to-flat 155 m² collecting area Four instrument bays ECLIPS LUMOS HDI POLLUX

LUVOIR-B

8-m, off-axis telescope 55 segments, 0.955-m flat-to-flat 43.4 m² collecting area Three instrument bays **ECLIPS** LUMOS HDI

LAUNCH VEHICLE OPTIONS

	LUVOIR-A	LUVOIR-B
NASA SLS Block 1	No	Yes
NASA SLS Block 1B	Yes	Yes
NASA SLS Block 2	Yes	Yes
Blue Origin New Glenn	No	Yes
SpaceX Starship	Yes	Yes

LUVOIR-A in SLS Block 2

LUVOIR-B in Starship (courtesy of SpaceX)

THE LUVOIR INSTRUMENTS

Observational challenge

Faint planets next to bright stars

Extreme Coronagraph for Llving Planetary Systems (ECLIPS)

Contrast ~ 10⁻¹⁰

Bandpass: 0.2 µm to 2.0 µm

Imaging spectroscopy: Vis R=140, NIR R=70 & 200

Tech development via Roman Space Telescope coronagraph instrument

Roman Hybrid Lyot Coronagraph

THE LUVOIR INSTRUMENTS

Observational challenge

Very cold to very hot gases

LUVOIR UV Multi-Object Spectrograph (LUMOS)

Bandpass: 100 nm to 1000 nm

R = 500 - 56,000

Up to 840 simultaneous spectra

FUV imaging channel

Heritage from STIS, COS, & NIRSPEC

Europa plumes

HST STIS UV instrument

THE LUVOIR INSTRUMENTS

Observational challenge

Imaging the ultra-faint and very small at high resolution

High-Definition Imager (HDI)

2 x 3 arcmin field-of-view Bandpass: 0.2 µm to 2.5 µm Large suite of filters & grisms Micro-arcsec astrometry capability

Heritage from HST WFC3 & Roman WFI

HST Wide Field Camera 3

POLLUX – A EUROPEAN CONTRIBUTION TO THE LUVOIR MISSION STUDY

UV spectropolarimeter (100 – 400 nm) Circular + linear polarization High resolution point-source spectroscopy (R ~ 120,000)

http://luvoirtelescope.org

