ULTRAVIOLET ASTRONOMY IN THE XXI CENTURY

e-Workshop 2020 – October 27-29

Downloaded from the JCUVA server hosting the workshop

ULTRAVIOLET ASTRONOMY IN THE XXI CENTURY

The Ultraviolet Researcher for the Investigation of the Emergence of Life

Gómez de Castro and the URIEL consortium

FORMATION OF EARTH-LIKE PLANETS

- The inner most region of young planetary systems is only accessible via spectroscopic means.
- This is the area were terrestrial planets do form.
- The radiating plasmas as dusty thus polarimetry provide additional information on the composition and dynamics of the inner part of young planetary disks.

UV Spectropolarimetry is the most sensitive tool to monitor and quantify the characteristics of the small dust particles carried by winds, and accretion streams. To detect the disturbances caused by nascent Earth-like planets.

POLARIZATION IS VARIABLE ON TIME SCALES OF DAYS

Distribution of CS matter in AK Sco

Gómez de Castro et al. 2013

- It is a complex area where many physical ٠ components share similar electron temperatures and radiating at UV wavelengths
- Polarization variability has been detected in 35% of • the stars with more than 2 observations.
- The spectral tracers are not always different and ٠ polarimetry enables discrimination trough the dust column, dust size distribution and alignment.
- Comets during early life of planetary systems will be ٠ accesible

TABLE 2 General and Linear Polarization Properties							
Star	A _v	$\log L/L_{\odot}$		P(t) (%)	$\psi(t)$	$\psi(\lambda)$	ψ _* (λ)
RY Tau T Tau SU Aur DG Tau FU Ori V1057 Cyg	$\begin{array}{c} 1.88 \pm 0.15 \\ 1.44 \pm 0.10 \\ 0.93 \pm 0.14 \\ \dots \\ 2.50 \pm 0.22 \\ 3.1 \end{array}$	1.24 1.45 1.25 ≥ 0.88 2.43	$\begin{array}{c} 2.70 \pm 0.22 \\ 1.17 \pm 0.05 \\ 0.21 \pm 0.05 \\ 5.99 \pm 0.05 \\ 0.76 \pm 0.01 \\ 1.67 \pm 0.02 \end{array}$	$\begin{array}{l} \Delta P > 1.0 \\ \Delta P > 1.0 \\ \Delta P < 0.5 \\ 0.5 < \Delta P < 1.0 \\ \text{no} \\ ? \end{array}$	$ \Delta \psi > 30^{\circ} $ $ 15^{\circ} < \Delta \psi < 30^{\circ} $ $ \Delta \psi > 30^{\circ} $ $ \Delta \psi < 15^{\circ} $ $ no $ $ no $	$\begin{array}{c} 0^{\circ} \text{ to } \sim 23^{\circ} \\ 0^{\circ} \\ 0^{\circ} \text{ to } \sim 20^{\circ} \\ 0^{\circ} \\ 0^{\circ} \\ 0^{\circ} \end{array}$	yes no yes no no? (no)
Nadeau &	Bastien	, 1986			<u></u>		

ASTR	OPHYSIC	AL CON	STRAINTS	3			BIOLOGICAL SIGNATURES					
Ga 4.6	4.4	4.2	4.0	3.8	3.6	3.4	3.2	3.0	2.8	2.6	2.4	2.2
			Late heavy				PROTE		LABO	RATORY EXPE	RIMENTS SIM	ULATING
1 A		Вс	ombardment (3.9 Gy)		ns of life		AMINO	DACIDS	EARLY EART	TH CONDITIONS	SPACE ICE	& COMETS
Earth Form	nation			-stromat	tolites-		experi	ments	Miller 1952	Parker et al. 2011	Muñoz-Caro et al 2002	Chen et al. 2008
(4.54 G	iy) 🗖			(3./(зу)		Glycine					
							Alanine	2				
							Asparti	c acid				
70							Serine					
							Valine					
Count					15	SATE .	Glutam	ic acid				
Crust	& Oceans						Phenyla	alanine				
(4.5	-4.3 Gy)	~ COOH ~ COOH					Methio	nine				
Gly	H ₂ N ²		- 41-				Isoleuc	ine				
୭ -2-AB/	A H₂N∽∽⊂Ci		I -Ala		Stelen		Leucine	2				
/ L-2	2-ABA H ₂ N	H ₂ N					Cystein	e				
							Histidin	ie				
	al + β-Ala		9 10 11 12		30.00		Lysine					
D-Ala							Aspara	gine				
	L-Asp						Pyrroly	sine				
	-Asp			67P/C	nuryumo	v–Gerasimenk	O Proline					
IN-EtGiy	I ₂ N_0_NH ₂ L-Ser		H ₂ N ⁻	Ч соон NH₂	Glycing	datacted	Glutam	ine				
Sar					Giycine (Arginin	e				
	. WIIII.	IL LALING I A			Altwegg e	et al. 2016)	Threon	ine				
why why	myle WWWWWW	M/MM	Mm 1				Seleno	cysteine				
2.5 5.0 7.5 10.0) 12.5 15.0 17.5 20 ד	.0 22.5 25.0 27.5 3 Fime (min)	0.0 32.5 35.0 37.5 40	.0 42.5			Tryptop	ohan				
	12						Tyrosin	e				

The chirality of alanine, the enantiomeric imbalance detected in comets and meteorites (1%-60%), the polarization of the radiation from comets through scattering by the dust grains in the coma can make alanine detectable by remote sensing opening a new path to astrobiological research.

Gómez de Castro & de Isidro-Gómez 2020

Alanine abundance scaled from 67P/Churyumov–Gerasimenko's glycine (graphs after Gómez de Castro & de Isidro-Gómez, 2020)

URIEL Scientific Requirements and traceability matrix

Scientific	Scientific	Maacuromonto		
Objectives	Requirements	Measurements		
Search for signatures of alanine in comets	High sensitivity spectro- polarimetry in the 150-250 nm spectral range. Long slit.	Rotation of the polarization vector		
Mineralogy of Solar System and interstellar minor bodies	High sensitivity spectropolarimetry in the 150- 600 nm spectral range	Composition		
Measure the abundance of small dust grain in the disk atmosphere	High sensitivity spectropolarimetry in the 150- 600 nm spectral range	Variation of polarization with wavelength. Variation of the polarization strength with the age of the system		
Measure abundance of holes and rings in the discs	High sensitivity Spectro- polarimetry in the 150-600 nm spectral range	Variation of the polarization strength between systems with similar ages and stellar activity		
Measure the size of the stellar magnetosphere	High sensitivity spectroscopy in the 150-350 nm spectral range	Lines and continuum flux		
Detect dust clouds close to the star and comets	Monitoring during 1.5- 2 stellar rotation periods of the spectropolarimetric signal in the 150-600 nm range	Variations in the polarization with rotational phase.		
UV radiation input on the disk	Monitoring during 1.5- 2 stellar rotation periods of the spectropolarimetric signal in the 150-350 nm range. Photon counting detector	UV radiation field and variability time-scales.		
UV radiation field for ARIEL targets	UV spectroscopy in the 150-600 nm range to overlap with ARIEL photometric bands	UV spectra and flares (if required)		

Main characteristics of URIEL

Optical layout	Ritchey-Chretien Mounting Minimization of instrumental polarization				
Primary size	50 cm diameter				
Instrument	MgF2 Polarizer-Wollaston Prism Analyzer Curved grating – dispersion 600 Wavelength range 150-300 nm Solar blind detector				
Orbit	HEO or L2				
Tech. Probe	AURORA (target < 0.03% @ 180 nm)				

URIEL early design to be flown with ARIEL

Summary:

- UV spectropolarimetry is a fundamental technology for the investigation of the formation of planetary systems, Earth-like planets and astrobiological research, in general.
- The technology needs to be optimized for astronomical observations (see CLASP1/2 for solar observations).

URIEL consortium is growing now.

Please, contact Prof. Ana I Gómez de Castro, aig.at.ucm.es, if interested in participating in it