The current and future capabilities of MCP based UV detectors

J. Vallerga, J. McPhate, A. Tremsin and O. Siegmund Space Sciences Laboratory University of California, Berkeley

200+ Detector Years in Orbit!

Mission	# of Detectors	Years
EUVE	7	8.3
ALEXIS	6	12
SUMER (SOHO)	2	4
UVCS (SOHO)	2	11.5+
FUSE	2	7.9+
IMAGE	2	5.7
ALICE (Rosetta)	1	4.1+
GALEX	2	4.1+
ALICE (New Horizons to	Pluto) 1	1.3+
COS (Hubble)	1	0 (Sept 08)

+ still operating

200+ Detector Years in Orbit!

# of Detectors	Years
7	8.3
6	12
2	4
2	11.5+
2	7.9+
2	5.7
1	4.1+
2	4.1+
o Pluto) 1	1.3+++++
1	0 (Sept 08)
	# of Detectors 7 6 2 2 2 2 2 1 2 Pluto) 1 1 1 1 1 1 1

+ still operating

Imaging, Photon Counting Detectors

Anode Types

Medipix ASIC Intensified CCD

Design/Performance Flexibility

Input aperture

Window/door

Photocathode (QE, bandpass)

MCPs (format, resolution)

Anode (resolution, gain, rate) KBr - CsI - CsTe - GaN (xray to optical)

d < 160mm, r > 7cm, pore spacing > 3µm

Delayline (4 amps) Cross Strip (128 amps) Medipix ASIC (65k amps)

Tradeoff example (XDL)

Case study of two UV spectrometer detectors

Cosmic Origins Spectrograph

"Hubble class" instrument

Large, reliable, stable, well calibrated and tested.

Extreme QA

ALICE on New Horizons
Pluto mission
Low power, mass, telemetry
"Moderate" resolution, calibration, testing, QA

Case study of two UV spectrometer detectors (cont.)

Parameter	COS	ALICE
Size (mm)	178 x 10	38 x 20
Format (pxls)	32768 x 1024	1024 x 32
Resolution (µm)	25	80
Mass (kg)	33.4	0.66
Power (W)	37	1.1
Cost	\$\$\$\$\$\$\$\$	\$

Both have: curved MCPs, vacuum doors, Csl photocathodes, 20 kHz ct rates (10% deadtime)

Improvements in MCP Detectors since COS

- MCP fixed pattern noise improved
- Electronics (Time to Digital Converters)
 - Faster (250 kHz at 10% deadtime)
 - FPGA logic
 - Lower power
- Readout technologies
 - Crossed Strip
 - Medipix and Timepix ASICs

MCP Fixed pattern noise

COS flat field 16 x 10 mm

Optical tube flat field 25 mm

Cross Strip Anode

Medipix/Timepix ASIC readout

Original Medipix mode readout

256 x 256 (14 mm)

Zoom

Timepix version of Medipix

Amplitude rather than counts using "time over threshold' technique

If charge clouds are large, can determine centroid to subpixel accuracy

Tradeoff is count rate as event collisions in frame destroy centroid information

Single UV photon events

Factor of 8 improved resolution!

256 x 256 converted to 4096x4096 pixels (3.4µm pixels)

Factor of 8 improved resolution!

256 x 256 converted to 4096x4096 pixels (3.4µm pixels)

Zoomed

The MCP pore spacing of 8µm limits further improvement

Conclusions

- UV detector performance has improved substantially over the last decade
- We now have many tools to optimize detector to application/science goals
- There are still tradeoffs to be made
- Start early and build prototypes!

jvv@ssl.berkeley.edu

