Instrument	EPIC MOS	<u>EPIC</u> pn	RGS	<u>OM</u>	
Bandpass	0.15-12 keV	0.15-15 keV	0.35-2.5 keV (1)	180-600 nm	
Orbital target vis. ⁽²⁾	5-135 ks	5-135 ks	5-135 ks	5-145 ks	
Sensitivity ⁽³⁾	~10-14 (4)	~10-14 (4)	$\sim 8 \times 10^{-5}$ (5)	20.7 mag (6)	Optical & UV Monitor
Field of view (FOV)	30' (7)	30' (7)	~5'	17'	
PSF (FWHM/HEW)(8)	5"/14"	6"/15"	N/A	1.4"-2.0"	(OIVI)
Pixel size	40 µm (1.1")	150 µm (4.1")	81 µm (9×10-3 Å)(9)	0.476513" (10)	on-board
Timing resolution ⁽¹¹⁾	1.5 ms	0.03 ms	0.6 s	0.5 s	XMM-Newton
Spectral resolution ⁽¹²⁾	~70 eV	~80 eV	0.04/0.025 Å ⁽¹³⁾	350 (14)	

Antonio Talavera

XMM-Newton Science Operation Centre, ESAC, ESA

OM: Instrument Description

- cm Ritchey-Chretien telescope
- cal ratio of f/12.7 and focal length of 3.8 m
- tal coverage between 170 nm and 650 nm of a 17 arcmin square field of view
- ter wheel with 11 apertures: one blanked off, six broad band filters (U, B, V, /W1, UVM2 and UVW2), one white, one magnifier and two grisms (UV and optical)
- tector: micro-channel plate intensified CCD (2048 x 2048 pixels final format)

OM: Instrument Description

Detector: micro-channel plate intensified CCD with 384 x 288 physical pixels (Active area 256x256). Amplification: 10⁵

Photon events centroided to 1/8 physical pixel (2048 x 2048): 0.5"

"Shift and Add" mechanism to compensate S/C drift or jitter

Fast event timing: 500 ms in fast mode

Schematic Structure of Detector Head

OM: filters & grisms

OM: some examples

OM: performance

l limiting magnitude: igma in 1000 s

OM UV grism sensitivity: detected flux (erg/cm2/s/A)

er	Spectral type					
	B0	A0	G0	KO	WD	
	19.8	19.8	19.7	19.7	19.7	
	21.0	20.8	20.2	19.9	20.6	
	21.8	20.4	19.6	18.6	21.2	
V 1	21.1	19.2	17.6	15.4	20.5	

Detection	Exposure time (s)			
level	1000	5000		
1-σ	1.0 10-14	4.6 10-15		
3-σ	4.0 10-14	1.6 10-14		
10-σ	2.4 10-14	7.0 10-14		

OM: operational configuration with filters

- b basic modes:
- Imaging
- Fast mode (< 512 pix)
- Default image
- Default image + fast mode
- User defined windows (up to 5 windows, 2 in fast mode)
- Full-Frame Low-Resolution 1024 x 1024 1" pixels
- Full-Frame High-resolution 2048 x 2048 0.5" pixels

- Total number of pixels is limited
- Fast window: 22 x 23
- **Default configuration:**

Optical Monitor: default windows

M: operational configuration with grisms

Single object spectroscopy: target at the boresight

• Field spectroscopy: all objects in the f.o.v.

uv1000.fits_1

Artifacts in OM images

- Straylight loops
- Central bright patch
- Gost images
- Streaks

otical Monitor (and all XMM-Newton) data

All data are processed, corrected and calibrated with the Science Analysis System (SAS).

Then they go into the XMM-Newton Science Archive (XSA):

http://xmm.esac.esa.int/xsa/

otical Monitor data processing: what is it?

trumental correction	<u>ns</u> <u>II) Calibr</u>	<u>ation</u>			
strometry(filters & gris	ms): • Astro	metry:			
Geometric distortio	All corrections and calibrations are	om X,Y to R.A. & Dec			
X,Y linearized posit	included into OM data				
notometry: - aperture - PSF	processing through corresponding SAS algorithms & CCFs	metry: om count rate to magnitude, andard UBV, color indices, AB			
time	and dead // // // // // // // // // // // // //	aht curve			
- time sensitivity deg	radation > fr	<u>com count rate to absolute flux</u>			
SAS RESULTS CAN BE USED DIRECTLY FOR SCIENTIFIC INTERPRETATION					
 geometry:distortion spectral extraction spectrum count rate 	, rotation	<i>com position to wavelength com count rate to absolute flux s. wavelength</i>			

OM time sensitivity degradation

Sensitivity loss in 2015: •U, B, V, UVW1 : < 15 % •UVM2, UVW2 : < 30 %

OM data reduction with SAS: accuracy

rometric precision (image photometry): $RA_off = -0.22 \pm 1.8 \text{ arcsec } Dec_off = -0.40 \pm 2.1$ *mit is 0.7" due to residual distortion and catalogue uncertainties*)

- otometric precission:
- 0.02mag (2%) for MS stars
- 0.04mag (4%) for MS stars in U filter (due to Balmer discontinuity effects)
- 10% for non Main Sequence stars
- absolute flux: errors < 10% (up to 2% depending on spectral type)
- sms spectra:
- wavelength: internal accuracy: 7A (UVgrism), 15A(Vgrism) / possible 10 A shift
- wavelength across f.o.v.: up to 50A shift
- spectral resolution: 15A for UVgrism (worst in Vgrism)
- absolute flux: better than 10% (up to 20% at edges of spectral range)

oss-calibration: grisms and grisms versus filters: EXCELLENT (10%)

Spectral Energy Distribution of objects in the OM f.o.v.

OM Catalogue: available soon

OM usage: Preferred Filters

From rev. 42 to 1343 there were 15384 OM exposures with filter nonblocked

9699 exposures with one of the UV filters

OM usage: publications

papers :

2001 - 11 papers 2002 - 8 papers 2003 - 12 papers 2004 - 31 papers 2005 - 27 papers 2006 - 32 papers

Total = 121 up to Dec. 2006

refereed papers with "OM" or "Optical Monitor" in the Abstract, i.e. o OM data very relevant for the paper (ADS).

refereed papers with "OM" or "Optical Monitor" in the Title (ADS).

The Crab: OM(231, 291,344 nm) versus VLT(429,657, 673 nm)

The Crab: OM(231, 291,344 nm) versus composite X_opt_radio

OM filter	Count rate	AB mag	AB Flux (erg/cm2/s/A)
UVW2	0.12	18.84	7.05e-16
UVM2	0.29	18.74	6.49e-16
UVW1	1.89	17.88	9.11e-16
U	5.18	17.40	1.00e-15

XMM-NEWTON OM B filter ; Comet Tempel 1

2005-07-04T05:50:45Z

M81: OM(231, 291,344 nm) versus Galex

OM photometry: zero points

oints for Zero epoch

- finition of the zero point (magnitude giving one count per second) can be given as:
- Zero_point = m_vega+2.5*alog10(countrate_vega)
- he count rate of Vega is obtained through simulations
- pints for OM instrumental system (at zero epoch)

2	19.2429	18.1979	17.2038	15.7724	14.8667
	В	U	UVW1	UVM2	UVW2

- oints, corrected to Johnson UBV are:
- 3 19.2661 18.2593)

AB magnitude system for OM

I counts to flux conversion based in white dwarfs

nt ı 	rate to flux c	onversion (from WD's)			
	uvw2	uvm2	uvwl	u	b	v
	2120.	2310.	2910.	3440.	4500.	5430.
	5.71e-15,	2.20e-15,	4.76e-16,	1.94e-16,	1.29e-16,	2.49e-16
Thi	is gives erg	g/cm2/s/A				
re	elative erro	ors (stdev)	/mean) are	:		

I counts to flux conversion from White Dwarfs versus Pickles and BPGS spectral libraries

s library

Filter	A0V	B0V	F0V	G0V	K0V	MOV	Vega
V	2.50E-16	2.48E-16	2.52E-16	2.54E-16	2.56E-16	2.65E-16	2.50E-16
В	1.36E-16	1.16E-16	1.41E-16	1.53E-16	1.60E-16	1.81E-16	1.34E-16
U	1.71E-16	1.94E-16	1.80E-16	1.83E-16	1.88E-16	2.01E-16	1.70E-16
UVW1	4.96E-16	4.72E-16	4.96E-16	4.51E-16	3.88E-16	1.09E-16	4.86E-16
UVM2	2.20E-15	2.14E-15	2.10E-15	1.84E-15	1.66E-15	n.a.	2.19E-15
UVW2	6.06E-15	5.56E-15	7.15E-15	6.05E-15	5.76E-16	n.a.	5.88E-15

S library

Filter	A0V	B0lb	F0IV	G0V	K0V	M0V
V	2.48E-16	2.50E-16	2.50E-16	2.55E-16	2.56E-16	2.61E-16
В	1.29E-16	1.17E-16	1.38E-16	1.44E-16	1.55E-16	1.80E-16
U	1.66E-16	1.97E-16	1.77E-16	1.88E-16	1.85E-16	1.94E-16
UVW1	4.79E-16	4.76E-16	4.84E-16	5.02E-16	5.15E-16	3.14E-16
UVM2	2.15E-15	2.17E-15	2.18E-15	2.27E-15	2.02E-15	1.42E-15
UVW2	5.56E-15	5.25E-15	6.14E-15	6.50E-15	6.34E-15	2.46E-15

OM fluxes in AB system

n_phot is the number of photons produced by 1 erg input ctrum, then 1/n_phot is the rate to flux conversion factor (in quency space).								
Count	Count rate to flux conversion in AB system (frequency)							
uvw2	uvm2	uvwl	u	b	v			
2120.	2310.	2910.	3440.	4500.	5430.			
3.535e-27	3.937e-27	1.360e-27	7.663e-28	8.465e-28	2.459e-27			
This give	This gives erg/cm2/s/hz							
e that the effective frequency of a filter can be any within filter range since the flux is constant. Even if we are in quency space, we can characterise the filter by its effective elength.								

OM fluxes in AB system

In then convert these factors to lambda space by multiplying by lambda**2) and we get:								
Count	Count rate to flux conversion in AB system (lambda)							
uvw2	uvm2	uvwl	u	b	v			
2120.	2310.	2910.	3440.	4500.	5430.			
5.70e-15	2.21e-15	4.82e-16	1.94e-16	1.25e-16	2.50e-16			
nis gives e	erg/cm2/s/A							
surprisingly, if we compare these last factors with the ones ved directly from WD's fluxes, we have:								
1.002	0.994	0.988	0.999	1.029	0.995			

OM Astrometry

- Seometric distortion
- distortion map derived from OM image using more than 800 stars
- it corrects positions to 0.7" rms error
- SAS provides RA & Dec for all sources letected in OM images - from X_Y, AHF (star racker) & boresight information.
- Additional cross-correlation (in SAS) with JSNO catalogue allows us to improve the coordinates:
- Using the new boresight:
 - RMS offset from USNO < 1.5"

OM grisms calibration

velength calibration:

- F-type stars:HD 221996, HD 224317 (V & UV grisms, low & high resolution) HD 13499, HD 13434 (V & UV grisms, low resolution, across FOV)

(Field stars at different positions in FOV (V & UV grisms))

- White dwarfs with Hydrogen lines (BPM 16274, GD50,...) (for V-grism)

calibration:

- Spectrophotometric standard stars (WD):

GD 153, HZ 2

sms distortion:

- 3C273
- other science observations

OM grisms calibration: wavelength

- e wavelength scale: anchor point \rightarrow zero order
- asuring zero-order position: it can be predicted for User Def. observing windows, (with less accuracy for full frame images), and then refined by centroiding algorithm

velength range:

- Vis-grism: 3000 6000 A
- UV-grism: 1800 3600 A (second order contamination)

(the range could be extended, but not the flux calibration)

velength scales

- : lambda (A) = 991.778 + 1.8656 X + 0.0007713 X² (X : pixels from zero order)
- : lambda (A) = 200.898 + 5.626 X

```
internal error: < 7 A (UV)
global shift due to zero order position: about +/- 10 A
```

OM grisms data calibration: wavelength

- avelength scale variations across f.o.v.:
- HD 13499 offset observations and field stars in fflr science observations:
 - Wavelength shift on right hand part of the image: up to 50 A
- solution : limited by mod_8
- UV grism: better than 15 A @ 2600 A (from NGC 40 observations)
- V grism: worst than UV
- Mod_8 is stronger in V grism (because of higher response)

OM grisms data calibration: flux

ux scale:

verse Sensitivity Function (ISF)

 $ISF(\lambda) = Fstd (\lambda) / CRstd (\lambda)$ Fobs(\lambda) = CRobs(\lambda) x ISF (\lambda)

ix accuracy: around 10% (slightly rst at long wavelength end of grism)

and V common range: excellent reement!!!

B, U, UVW1, UVM2, UVW2 rsus Grisms: excellent reement!!!

ne sensitivity variation: not rected yet

Optical Monitor calibration: what's new?

onse matrices for OM:

UVW2, UVM2, UVW1, U, B, V filters UV and V grisms

