Local Lyman α emitters and their relevance to high-redshift star-forming galaxies

> J. Miguel Mas-Hesse on behalf of the Lyman α team:

D. Kunth, A. Hakim, G. Östlin, M. Hayes, A. Petrosian, C. Leitherer, D. Schaerer, A. Verhamme, R. Terlevich.

ESLAB Symposium May 30th, 2007

Objectives

- Our goal: to study star formation processes in the high-*z* universe.
- Ly α emission might be used to trace star formation up to very large redshifts.
 - But for this we need first to understand under which conditions a galaxy shows Lyα in emission!
- Is the Ly α emission detectable at large z?

+ Brightest H recombination line $W_{Ly\alpha} > 100\text{\AA}$ (Max $W_{Ly\alpha} = 240\text{\AA}$?).

+ Detectable with ground optical telescopes at z = 2.5 - 6. Cheap!

 \Rightarrow Ly α should be a very competitive tool (and already proved to be), but its interpretation is not straightforward at all.

- The Ly α puzzle in nearby starbursts:
 - 1980-90ies: several searches for Ly α emission from z~2-3 primordial galaxies unsuccessful

→ 1 or 2 puzzles: small number of galaxies and/or lower than expected Ly α emission?

- The Ly α puzzle in nearby starbursts:
 - IUE satellite: UV spectra of nearby starbursts (Ly α) + optical spectra (H α ,H β)
 - → 1) extinction corrected I(Lyα)/I(Hβ) << case B, and W(Lyα) smaller than expected from synthesis models.

(Meier & Terlevich 1981, Hartmann et al. 1984, Deharveng et al. 1986,... Giavalisco et al. 1996)

- The Ly α puzzle in nearby starbursts:
 - IUE satellite: UV spectra of nearby starbursts (Ly α) + optical spectra $(H\alpha, H\beta)$
 - \rightarrow 1) extinction corrected I(Ly α)/I(H β) << case B, and $W(Ly\alpha)$ smaller than expected (synthesis models).

- The Ly α puzzle in nearby starbursts. Possible explanations:
 - Dust (Charlot & Fall 1993).
 - With « appropriate » (metallicity-dependent) extinction law "no problem".
 - The underlying stellar Lyα absorption could be responsible for the low intensity of the line (Valls-Gabaud 1993).
 - Inhomogeneous ISM geometry could be the primarily determining factor, not the dust (Giavalisco et al. 1996).
 - Short « duty cycle » of SF might explain small number of Ly α emitters

May 30th, 2007

- The Ly α puzzle in nearby starbursts.
 - The HST era: high resolution spectra of the Ly α profiles.
 - \rightarrow 1) Very low metallicity / dust deficient galaxies, like IZw18, didn't show Ly α in emission, but a broad dumped absorption profile.

May 30th, 2007

Tololo 65 [O/H] =-1.34 *W*_{Lyα} < -30Å SBS 0335-052 [O/H] =-1.5 $W_{Ly\alpha} < -30 \text{\AA}$

May 30th, 2007

J. Miguel Mas-Hesse

- The Ly α puzzle in nearby starbursts.
 - The HST era: high resolution spectra of the Ly α profiles. _
 - \rightarrow 2) Lessons from GHRS-STIS studies:
 - + Variety of profiles with no clear correlation to other previously assumed parameters: O/H, dust, mass,.....

May 30th, 2007

- The Ly α puzzle in nearby starbursts.
 - The HST era: high resolution spectra of the Ly α profiles.
 - \rightarrow 2) Lessons from GHRS-STIS studies:
 - + Detection of neutral gas outflows with $v \sim 200-300$ km/s in
 - 4 galaxies showing $\text{Ly}\alpha$ in emission.
 - + Emission generally showing a clear P Cyg profile.

- The Ly α puzzle in nearby starbursts.
 - The HST era: high resolution spectra of the Ly α profiles.
 - \rightarrow 2) Lessons from GHRS-STIS studies:
 - + Detection of neutral gas outflows with v ~ 200-300 km/s in
 - 4 galaxies showing Ly α in emission.
 - + Emission generally showing a clear P Cyg profile.
 - + Only 1 case found with a pure emission line.
 - + The galaxies with no outflows showed dumped absorptions.
- \rightarrow Outflows and superwinds might be the main crucial/determining factor for $Ly\alpha$ escape!?

12

- The Ly α puzzle in nearby starbursts.
 - The HST era: high resolution images of Ly α emission.
 - \rightarrow 3) Lessons from ACS/SBC studies:
 - + We performed a pilot study of 6 nearby starburst galaxies of different morphologies, properties and Ly α profiles.
 - + Combining ACS/HST imaging in Ly α + narrow continuum filter with WFPC2/HST images in 5 other filters we were able to remove the effects of stellar population, UV slope ...
 - \rightarrow Diffuse Ly α emission detected and mapped!

Diffuse emission can account in some cases for 2/3 of total flux in large apertures (IUE...)

 \rightarrow Confirmation of Ly α resonant scattering halo!

Results: Haro 11

Luminous blue compact galaxy SFR $\sim 20M_0/yr$

- Brightest UV knot NOT brightest in $\text{H}\alpha$
- Ly α largely uncorrelated with H α and UV
- Ly α driven by singe star-forming knot
- Large diffuse, symmetric Ly α halo
- 80% in diffuse component
- Total escape fraction ~8% assuming case B
- LyC escape fraction also 8%

May 30th, 2007

J. Miguel Mas-Hesse

NUV

Results: Haro 11

- 1500 Å contours on Chandra 0.2-10 keV.
- Emission associated to the knot emitting $Ly\alpha$.
- Outflowing hot gas in diffuse X-ray ~30kpc (MEKAL $kT \sim 8 \times 10^6 K$)
- Supports Ly α emission visibility associated to the presence of winds.

counts

553 brìghtn:

surface

Ş

Total

May 30th, 2007

Energy (keV)

Results: SBS 0335-052

May 30th, 2007

J. Miguel Mas-Hesse

Results: IRAS 08339+65

May 30th, 2007

J. Miguel Mas-Hesse

Results: Tololo 65

May 30th, 2007

Results: NGC 6090

May 30th, 2007

J. Miguel Mas-Hesse

Results: ESO 338-IG04

J. Miguel Mas-Hesse

Overview of local sample

- Hand-picked pilot study. Six galaxies only -- not statistically significant.
- Max escape fraction just ~6% !
- Least dusty and lowest Z: only net absorber

Highest *EW(Lya)* in the dustiest, highest *Z* galaxy.

Name	M _B	O/H	Log	EW	EW	f _{Esc}
			FUV	(Hα)	(Lyα)	(Lyα)
Haro 11	-20	7.9	10.2	663	18.8	0.035
SBS 0335-52	-17	7.3	9.1	1455	-11.3	<0
IRAS 08+65	-21	8.7	10.0	200	21	0.036
Tol 65	-15	7.6	8.3	74	2.4	0.005
NGC6090	-21	8.8	9.9	328	54	0.039
ESO338–04	-19	7.9	9.6	2383	23	0.057

May 30th, 2007

Modelling the properties of the Lyman α profile

- Verhamme et al (2006) presented a grid of consistent models of the Lyα profiles produced by an expanding shell surrounding a star formation region, as a function of the physical properties of the expanding gas.
- Depending on the velocity of the shell, the emission profile might ^a appear (with no dust):
 - Double peaked (Vexp = 0).
 - P Cyg with redshifted emission peak (Vexp = 100-300 km/s).
 - P Cyg with double, redshifted emission peaks (Vexp > 400 km/s).

Modelling the properties of the Lyman α profile

 But even small amounts of dus destroy the scatered photons and yield profiles ranging from estándar P Cyg ones (<u>black</u>) to pure, blueshifted absorbtion (<u>yellow</u>).

Lyman α : lessons from local starbursts

- W(Ly α) and Ly α /H β < case B prediction !
- No clear correlation of Ly α with metallicity, dust, other parameters found.
- Strong variation of Ly α profiles observed within a galaxy.
- Ly α scattering « halo » observed.
- Starbursts show complex structure (super star clusters + diffuse ISM); outflows ubiquitous.
- Ly α affected by:
 - ISM kinematics.
 - ISM (HI) geometry.
 - Dust.
 - Precise order of importance unclear!

High-z Lyman α emission

At (very) low metallicity: strong/dominant Ly α ! since

- increased ionising flux from stellar populations.
- dominant cooling line (few metals).
- emissivity increased by collisional excitation.
- (higher nebular temperature, Te).
- → up to ~10% of L_{bol} emitted in Ly α !
- \rightarrow potentially detectable out to highest redshifts!!

...but searches unsuccessful until 1990ies

High-z Lyman α emission

- + Breakthrough about 10 years ago (Hu & McMahon 1996) thanks to larger collecting areas and fainter flux limits.
- + Lyα narrow band imaging surveys are now very successful in detecting faint galaxies, with typical luminosity below that of LBGs (e.g. Fynbo et al. 2001, Ouchi et al. 2003, Malhotra & Rhoads 2002 and SUBARU team).
- + Lyα also is found to have P-Cygni profile: superwinds of neutral gas!

May 30th, 2007

J. Miguel Mas-Hesse

- + The number of high-z emitters is, however, still an order of magnitude smaller than predicted by models (Pritchet 1994).
 - Is the true number of primeval galaxies smaller than predicted?

or

- Does only a fraction emit $Ly\alpha$?

Many evolutionary effects may be at work between high-*z* and low-*z*. Certainly, we can't claim our sample is representative.

→ But physics can't evolve, and therefore

+ MUST treat Lya-derived properties with caution!

+ MUST have a low-z statistically significant sample!