

General Relativity studies through X-ray spectroscopy of Fe (and others) K_{α} fluorescent lines

Matteo Guainazzi European Space Astronomy Center of ESA Villafranca del Castillo (Spain)

Giorgio Matt Department of Physics "E.Amaldi", University "Roma Tre" (Italy)

> Gabriele Ponti IASF-INAF, Bologna (Italy)

Outline

Relativistically broadened Fe K_{α} iron fluorescent lines:

- What are they?
- What do they tell us about supermassive black holes?
- What do they tell us about the accretion flow?
- What do they tell us about the origin of high-energy emission in Active Galactic Nuclei (AGN)?

Outline

Relativistically broadened Fe K_{α} iron fluorescent lines:

- What are they?
- What do they tell us about supermassive black holes?
- What do they tell us about the accretion flow?
- What do they tell us about the origin of high-energy emission in Active Galactic Nuclei (AGN)?

Phenomenological evidence

Which is the origin of the observed broadening?

Explanation

The line is produced in an accretion disk rotating around the supermassive black hole

Receding (redshifted)

Approaching (blueshifted)

Its profile is hence affected by:

- Doppler shifts
- Relativistic beaming (enhancing the "blue" side)
- Gravitational redshift

Matteo Guainazzi - "K, fluorescent line spectroscopy and General Relativity" – 1st NUVA Con

Alternative explanations

- Comptonization (Misra & Kembhavi 1998; Misra & Sutaria 1999)
 - Lack of high-energy spectral break and observed variability patterns are inconsistent with required Comptonization region
 - Implied seed photon blackbody region is unphysical
- Scattering by a relativistic optically-thick wind (Laurent & Titarchuck 2007)
 - Ruled out by observed variability timescales and lack of line/continuum correlation
 - Super-Eddington outflows ($L/L_{Edd} > 10$) are required
- "Fake" red-wing generated by absorbption by highly ionized gas:

Role of relativistic electrons

(Antonicci & de Castro 2005)

Effect of transfer of mechanical energy from relativistic electrons produced by magnetic reconnection or shocks to the circumnuclear gas (disk, BLRs)

Climate or whether?

• Fraction of AGN with relativistically broadened lines is still largely unknown. From XMM-Newton studies:

- $\approx 73\%$ of bright Seyfert 1s (Nandra et al. 2006)
- 42±12% of optimally exposed AGN (50±32% in a complete sample) (Guainazzi et al. 2006)

• Galactic BHs? We have basically no idea

Outline

Relativistically broadened Fe K_{α} iron fluorescent lines:

- What are they?
- What do they tell us about supermassive black holes?
- What do they tell us about the accretion flow?
- What do they tell us about the origin of high-energy emission in Active Galactic Nuclei (AGN)?

BH spin

The line profile depends on the distance of the Innermost Stable Circular Orbit (ISCO) of the accretion disk from the BH

Steep radial emissivity dependence

For a standard Sakura-Sunyaev accretion disk: q≈3

Evidence for the B-Z effect?Light bending?

Outline

Relativistically broadened Fe K_{α} iron fluorescent lines:

- What are they?
- What do they tell us about supermassive black holes?
- What do they tell us about the accretion flow?
- What do they tell us about the origin of high-energy emission in Active Galactic Nuclei (AGN)?

Innermost disk radius

In most cases one must *assume* that the profile is due to a maximally spinning black hole. This assumption consistently yields inner disk radius in the range: 1.24-3 r_a (GBHC), 1-2 r_g (AGN)

Dependency on disk inclination

(Matt et al. 1992)

Measurements of inclination

(Guainazzi et al. 2006)

In the Seyfert 2 MCG-5-23-16 the inclination angle is larger (\geq 47⁰) assuming that the line is produced in a Kerr metric

Sample of ≈20 type 1 AGN observed with XMM-Newton

First order expectation from the AGN unification scenario

Outline

Relativistically broadened Fe K_{α} iron fluorescent lines:

- What are they?
- What do they tell us about supermassive black holes?
- What do they tell us about the accretion flow?
- What do they tell us about the origin of high-energy emission in Active Galactic Nuclei (AGN)?

The inner region of an AGN

Uncorrelated line-continuum

If the relativistic lines (or the reflection continuum) are produced very close the BH, they should vary correlated to the primary continuum However, this generally **does not happen**

Light bending

A solution is the bending of light in the vicinity of the BH potential well

Transient redshifted (?) lines

Solution: orbiting spots

a=0, θ_0 =30°, r=r_{ms}+dr a=0, θ_0 =85°, r=r_{ms}+dr 1 0.8 0.8 F (Arb. units) 9.0 F (Arb. units) 0.6 0.4 0.2 0.2 0 0 9 9 E (keV) 6 E (keV) 6 3 3 0 0.25 0.5 0.75 0 0 0 0.25 0.5 0.75 Time (orbital periods) a=1, θ_0 =30°, r=r_{ms}+dr a=1, θ_0 =85°, r=r_{ms}+dr 0.8 0.8 F (Arb. units) (Arb. units) 0.4 ш 0.2 0.2 0 0 9 9 E (keV) 6 E (keV) 6 3 3 0 0 0.25 0.75 0 0.5 0.25 0.5 0.75 0 Time (orbital periods) Time (orbital periods)

a = 0, r = 6 r_g

X-ray flare co-rotating with the disk. The disk illumination produces the iron line

About 8 cases of the signatures of these spots known. Apart NGC3516, none of these cases is statistically compelling.

 $a = 1, r = r_{g}$

(Dovčiak et al. 2004)

BH mass measurement

These orbiting spots may allow a direct measurement of the BH mass, if the spot is small and corotating with the disk. A spot at radius *r* has an orbital period (as seen by us):

$T_{orb} = 310 (r^{3/2}+a) M_7 (s)$

In NGC3516:

$M_7 = 1-5$ (orbiting spot; *Iwasawa et al. 2004*) $M_7 = 1.7 \pm 0.3$ (optical lines reverberation mapping; *Onken et al. 2003*)

Conclusions

- XMM-Newton (and now *Suzaku*) has provided us with the ultimate evidence that relativistic effects can be studied through spectroscopy of AGN and GBHC
- They tell (or *can tell*) us about:
 - BH spin
 - Disk geometry and illumination
 - Validity of the unification scenario
- Variability studies (best possible with future generation X-ray missions) may tell us more about
 - Accretion flow physics
 - BH mass

Truncated disk? An AGN case

(Matt et al. 2000)

Two observations 3 years apart. In the latest:

- Soft X-ray emission is fainter
- Hard X-ray emission is flatter
- Iron line is halved

Truncated disk?

Truncated disks could explain also the low/hard state of Galactic BH binaries, where iron lines are detected primarily in high/soft states

Innermost disk radius in AGN

The only measurement of the BH spin in an AGN

In an XMM-Newton sample of 6 AGN (MCG-6-30-15 included; *Guainazzi et al. 2006*):