

DEPARTMENT OF PHYSICS AND ASTRONOMY

FUV Line Identification

David Boyce

Martin Barstow, Paul Dobbie, Anne Forbes X-ray and Observational Astronomy Group

FUV lines in white dwarf spectra

Can we distinguish between photospheric lines and ISM lines (without modelling)?

Should we rely on modelling alone to identify stellar content?

Why do we not detect the same line richness with FUSE as we do with HST?

Have we identified everything?

Introduction - The white dwarf spectrum in the FUV

Introduction - Why some white dwarfs are better than others for absorption work

Processing and candidate selection

 90 white dwarfs from FUSE Multimission Archive, hosted by the Space Telescope Institute

The data has been calibrated using the calfuse pipeline version 2.0.5 or later, resulting in several spectra (covering different wavelength segments) per FUSE exposure. The exposures for each segment are then co-added, weighting each according to exposure time, and finally the segments are combined, weighted by their signal-to-noise ratio, to produce a single spectrum

High velocity component separation candidates

	Physical P	arameters						
	Distance	Galactic C	oordinate s	Gravity	Temperature	Mass	Vphot	Vism
		l (deg)	b (deg)	logg	teff	М		
wd2350-706	92.0000	309.9147	-45.9375	8	69300		35.7200	-6.5300
wd2331-475	82.0000	334.8358	-64.8080	8.07	55812	0.743	22.4600	-0.7200
wd2211-495	53.0000	345.7883	-52.6217	7.52	64100	0.49	23.9300	-8.8700
wd2146-433	362.0000	357.18	-50.126	7.58	67912	0.574	18.1900	-12.3600
wd2013+400	141.0000	77.0018	3.1835	-	-		11.1400	-12.2600
wd1942+499	105.0000	83.0765	12.7465	7.97	34086	0.642	8.8800	-16.6500
wd1029+537	116.0000	157.5135	53.2437	7.77	46901	0.583	13.8000	-22.7800
wd1021+266	250.0000	205.7172	57.2139	-	-		9.4900	-7.1500
wd0621-376	78.0000	245.4061	-21.4282	7.27	58199	0.458	31.3300	13.1900
wd0229-481	-	266.6179	-61.5914	7.75	66394	0.623	22.9900	0.9000
wd0131-164	96.0000	167.2592	-75.1537	7.764	50047	0.588	10.8800	-8.6400
wd0050-332	58	299.1404	-84.1156	7.68	35816	0.516	11.0700	-14.9380
wd0501+524	59.0000	155.9533	7.0990	7.49	61193	0.43	21.4500	14.2500

Finding the spectra forest in the FUV

 Co-addition of multiple observations reveals spectral forest

Velocity component identification

From well known lines we know an average velocity for the star and the ISM in that direction

Using multiple stars we can differentiate between an unknown line being Photospheric or ISM without even knowing what it is.

Calculate predicted Lab wavelength for all the stars that contain the line

Reality Check

■5000 likely photospheric species in line list (Such as Ni IV, Fe V)

A likely line should occur every 0.05 Angstrom

Difference between predicted rest wavelength and first likely line

In 98% of cases a line is found before one is expected.

A line is normally found within 0.02 Angstroms of where one is predicted

Wavelength against velocity

Velocity plot distinguishes Photospheric and ISM lines in this star

Line strength against velocity for one star

Line strength against normalised velocity for all stars

Line by line normalised velocity average

Outlying line feedback process

Outlying line velocities indicative of

- 1.) Merged lines
- 2.) Lines with dual contributions
- 3.) Incorrect identifications

e.g. C III at 927.02 contains ISM and photospheric component. Apparent velocity therefore a blend of the two

Results from velocity analysis

 Spectral richness explainable with established chemical content.

No exotics required

Ar I	1 Ni VI	5
C 1	101	12
CII	3 O III	5
C III	2 O IV	5
Fel	1 O V	3
Fell	8 O VI	2
Fe III	31 P IV	3
Fe IV	27 P V	2
NI	12 <mark>S I</mark> I	1
NII	1 S IV	1
NIII	2 S VI	2
NIV	5 Si II	1
Ni II	1 Si III	2
Ni III	6 Si IV	3
Ni IV	28 Si V	1

Spectral synthesis

Forest modelled more accurately by synspec model 13,000K cooler than the stars effective temperature deduced from Lyman line fitting

Conclusions – What this means for White Dwarfers

- Method for identifying lines
- No exotic elements required

 Spectral Synthesis of the spectral forest suggests stratification - discrepancy of temperature (and therefore depth) between line forming regions

Conclusions – What this means for ISM studies

- Detected O VI is photospheric
- Method for distinguishing which velocity component an unidentified line belongs to
- No modelling of background source required.

DAVID BOYCE db139@star.le.ac.uk

