# Narrowband filters for far UV imaging

Paloma López-Reyes<sup>1</sup>\*, Nuria Gutiérrez Luna<sup>1</sup>, Carlos Honrado-Benítez<sup>1</sup>, Luis V. Rodríguez-de Marcos<sup>2</sup>, and Juan I. Larruquert<sup>1</sup>

\*paloma.lopez@csic.es

<sup>1</sup>Grupo de Óptica de Láminas Delgadas Thin Film Optics Group <sup>2</sup>Catholic University of America and NASA GSFC (CRESST II), Greenbelt, MD, USA



# Outline

- Our group
- Motivation:
  - FUV and EUV astronomy
  - Future observatories
- Experimental and facilities
- Results
  - Tunable narrow bands in the FUV
  - Spectral line selection
  - Narrow bands in the LUV
  - Other coatings
- Conclusions

# Outline

- Our group
- Motivation:
  - FUV and EUV astronomy
  - Future observatories
- Experimental and facilities
- Results
  - Tunable narrow bands in the FUV
  - Spectral line selection
  - Narrow bands in the LUV
  - Other coatings
- Conclusions



Grupo de Óptica de Láminas Delgadas

- Coating deposition for the FUV-EUV
- Coating metrology FUV-EUV

## https://gold.io.csic.es/



Grupo de Óptica de Láminas Delgadas

- Coating deposition for the FUV-EUV
- Coating metrology FUV-EUV
- Measurement of (n,k) of materials for the FUV-EUV
- Calculations and designs for specific targets in the FUV-EUV

# https://gold.io.csic.es/





Grupo de Óptica de Láminas Delgadas

- Coating deposition for the FUV-EUV
- Coating metrology FUV-EUV
- Measurement of (n,k) of materials for the FUV-EUV
- Calculations and designs for specific targets in the FUV-EUV

# https://gold.io.csic.es/





Vacuum UV

Grupo de Óptica de Láminas Delgadas

- Coating deposition for the FUV-EUV
- Coating metrology FUV-EUV
- Measurement of (n,k) of materials for the FUV-EUV
- Calculations and designs for specific targets in the FUV-EUV



#### Main difficulties:

- Absorption of air  $\rightarrow$  work in vacuum
- Absorption of materials  $\rightarrow$  complex designs
- (n,k) not well known  $\rightarrow$  uncertain designs

# https://gold.io.csic.es/

Long-time and expensive

# Outline

- Our group
- Motivation:
  - FUV and EUV astronomy
  - Future observatories
- Experimental and facilities
- Results
  - Tunable narrow bands in the FUV
  - Spectral line selection
  - Narrow bands in the LUV
  - Other coatings
- Conclusions

# **Motivation: FUV and EUV astronomy**



- Solar and atmosphere physics
- Exoplanet habitability
  - O<sub>2</sub>, O<sub>3</sub>, CH<sub>4</sub>, and CO<sub>2</sub> depend strongly on the UV spectrum of the host star
  - Strong atmospherical mass losses due to the host-star EUV flux
- Tracers of gas at few hundred thousand kelvins
  - Nearby galaxies have never been measured in 100-120 nm

2020 Astronomy and Astrophysics Decadal Survey

2020 Astronomy and Astrophysics Decadal Survey



Next priority flagship space mission:

Infrared (IR)/Optical (O)/Ultraviolet (UV) Large Telescope

LUVOIR/LUVEX

- Habitable exoplanets
  - General astrophysics

2020 Astronomy and Astrophysics Decadal Survey



# LUMOS

Multiobject spectrograph: FUV-Vis

France et al. 2017

Next priority flagship space mission:

Infrared (IR)/Optical (O)/Ultraviolet (UV) Large Telescope

LUVOIR/LUVEX

- Habitable exoplanets
  - General astrophysics

FLUID: Far and Lyman Ultraviolet Imaging Demonstrator







FLUID: Far and Lyman Ultraviolet Imaging Demonstrator



narrow- and medium-band interference filters for the LUVOIR/LUMOS imaging channel covering 100 – 180 nm



LUMOS

Spectral Bandpass: 100-400 nm Narrowband filters for the FUV and NUV: Δλ ~ 15 nm





Best approach: Multilayers in Bragg configuration



# Outline

- Our group
- Motivation:
  - FUV and EUV astronomy
  - Future observatories
- Experimental and facilities
- Results
  - Tunable narrow bands in the FUV
  - Spectral line selection
  - Narrow bands in the LUV
  - Other coatings
- Conclusions

# **Experimental: deposition system**

Thermal evaporation





# **Experimental: deposition system**

**Thermal evaporation** 









# **Experimental: deposition system**

#### Thermal evaporation









ISO-6 Evaporation + sputtering 70 cm Ø Rotator heater 15 cm Ø P~10<sup>-8</sup> mbar

#### **Reflectometry in the FUV-EUV**



insitu

#### **Reflectometry in the FUV-EUV**

**Stress** 







+ deposition system insitu

#### **Reflectometry in the FUV-EUV**

 Scole

 Scole

40-200 nm + deposition system insitu **Stress** 





#### 190-900 nm

#### **Reflectometry in the FUV-EUV**

NaavMap S GGE

**Stress** 

Other

ISO-8 40-200 nm + deposition system insitu

SEM







190-900 nm

# Outline

- Our group
- Motivation:
  - FUV and EUV astronomy
  - Future observatories
- Experimental and facilities
- Results
  - Tunable narrow bands in the FUV
  - Spectral line selection
  - Narrow bands in the LUV
  - Other coatings
- Conclusions











н Н

Contribution of many interfaces: **Multilayer** 

| Low Index       | High index                                             |
|-----------------|--------------------------------------------------------|
| MgF2, AlF3, LiF | LaF <sub>3</sub> , GdF <sub>3</sub> , LuF <sub>3</sub> |





$$d_L * n_H = d_H * n_H = \frac{\lambda}{4}$$

Quarterwave design (H/L)<sup>m</sup>

### **Objectives:**

- High throughput
- Optically stable
- Mechanically stable

### **Objectives:**

- High throughput
- Optically stable
- Mechanically stable

- Stress-related problems
- Material's stability

### **Objectives:**

- High throughput
- Optically stable
- Mechanically stable

Fluorides are more transparent: ✓ Thermal evaporation ✓ Hot deposited

- Stress-related problems
- Material's stability

### **Objectives:**

- High throughput
- Optically stable
- Mechanically stable

#### Fluorides are more transparent: ✓ Thermal evaporation ✓ Hot deposited



Typical fluoride CTE ~8-15 x10<sup>-6</sup> /°C

| Substrate         | CTE α (10 <sup>-6</sup> /°C) |
|-------------------|------------------------------|
| Fused Silica (FS) | 0.55                         |
| BK7               | 7.1                          |
| Silicon           | 2.8                          |

- Stress-related problems
- Material's stability

### **Objectives:**

- High throughput
- Optically stable
- Mechanically stable

#### 

✓ Hot deposited



Typical fluoride CTE ~8-15 x10<sup>-6</sup> /°C

|   | Substrate         | CTE α (10 <sup>-6</sup> /°C) |
|---|-------------------|------------------------------|
| < | Fused Silica (FS) | 0.55 Common use              |
|   | BK7               | 7.1                          |
|   | Silicon           | 2.8                          |

- Stress-related problems
- Material's stability
# **Objectives:**

- High throughput
- Optically stable
- Mechanically stable

#### Fluorides are more transparent: ✓Thermal evaporation ✓Hot deposited



| Typical huonde cre ~8-15 x10 ° /°C | Typical | fluoride | CTE | ~8-15 | x10 <sup>-6</sup> | /°C |
|------------------------------------|---------|----------|-----|-------|-------------------|-----|
|------------------------------------|---------|----------|-----|-------|-------------------|-----|

| Substrate         | CTE α (10 <sup>-6</sup> /°C) |
|-------------------|------------------------------|
| Fused Silica (FS) | 0.55 Common use              |
| BK7               | 7.1                          |
| Silicon           | 2.8                          |

# Challenges:

- Stress-related problems
- Material's stability



# **Objectives:**

- High throughput
- Optically stable
- Mechanically stable

Fluorides are more transparent: ✓ Thermal evaporation ✓ Hot deposited



# Challenges:

- Stress-related problems
- Material's stability



### Technology needs to be optimized

Reflectance and mechanical stability will depend on:
1. Design (number of bilayers)
2. Deposition temperature
3. Substrate
4. Coating materials

$$\sigma_{therm} = \left(\frac{E}{1-\nu}\right)_{film} \left(\alpha_{sub} - \alpha_{film}\right) (T - T_d)$$

### Technology needs to be optimized

Reflectance and mechanical stability will depend on:
1. Design (number of bilayers)
2. Deposition temperature
3. Substrate
4. Coating materials

$$\sigma_{therm} = \left(\frac{E}{1-\nu}\right)_{film} \left(\alpha_{sub} - \alpha_{film}\right) (T - T_d)$$

~R increases up to 13-15 bilayers at ~250°C while stress, cracks, and scattering are acceptable

López-Reyes, P., et al. *Optical Materials Express*, *11*(6), 2021

López-Reyes, P., et al. *Optical Materials Express*, *12*(2), 2022

### 3. Substrate

$$\sigma_{iherm} = \left(\frac{E}{1-\nu}\right)_{film} \left(\alpha_{sub} - \alpha_{film}\right) (T-T_d)$$

Typical fluoride CTE ~8-15 x10<sup>-6</sup> /°C

| Substrate         | CTE α (10⁻6/°C) |
|-------------------|-----------------|
| Fused Silica (FS) | 0.55            |
| BK7               | 7.1             |
| Silicon           | 2.8             |
| CaF <sub>2</sub>  | 18.85           |

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature

**3. Substrate** 

### 3. Substrate

$$\sigma_{therm} = \left(\frac{E}{1-\nu}\right)_{film} \left(\alpha_{sub} - \alpha_{film}\right) (T - T_d)$$

Typical fluoride CTE ~8-15 x10<sup>-6</sup> /°C

| Substrate         | CTE α (10 <sup>-6</sup> /°C) |
|-------------------|------------------------------|
| Fused Silica (FS) | 0.55                         |
| BK7               | 7.1                          |
| Silicon           | 2.8                          |
| CaF <sub>2</sub>  | 18.85                        |



### 3. Substrate

$$\sigma_{therm} = \left(\frac{E}{1-\nu}\right)_{film} \left(\alpha_{sub} - \alpha_{film}\right) (T-T_d)$$

Typical fluoride CTE ~8-15 x10<sup>-6</sup> /°C

| Substrate         | CTE α (10 <sup>-6</sup> /°C) |
|-------------------|------------------------------|
| Fused Silica (FS) | 0.55                         |
| BK7               | 7.1                          |
| Silicon           | 2.8                          |
| CaF <sub>2</sub>  | 18.85                        |



Design (number of bilayers) 2. Deposition temperature

3. Substrate

4. Coating materials

....but you can't always choose the substrate Other parameters: manageability, price, tolerance to thermal changes, polish, shape....

### 4. Coating materials

| Low Index       | High index       |
|-----------------|------------------|
| LiF, MgF2, AlF3 | LaF3, GdF3, LuF3 |
|                 | 1                |

Typical combination

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature

3. Substrate

### 4. Coating materials

| Low Index       | High index       |
|-----------------|------------------|
| Lif, MgF2, AlF3 | LaF₃, GdF₃, LuF₃ |
|                 |                  |

Typical combination

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature

3. Substrate

### 4. Coating materials

Low IndexHigh indexLiF, MgF2, AIF3...LaF3, GdF3, LuF3...

Typical combination

Promising new combination  $AIF_3 + LaF_3$ 

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - Deposition temperature
     Substrate

3. Substrate

# Results: tunable bands in the FUV @ $\lambda \ge 120$ nm4. Coating materials(AIF<sub>3</sub>/LaF<sub>3</sub>)<sup>m</sup> :



(AIF<sub>3</sub>/LaF<sub>3</sub>)<sup>m</sup>: ✓ higher reflectance

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature

3. Substrate

## **Results: tunable bands in the FUV** (@ $\lambda \ge 120$ nm 4. Coating materials (AIF<sub>3</sub>/LaF<sub>3</sub>)<sup>m</sup>:

• (MgF<sub>2</sub>/LaF<sub>3</sub>)<sup>13</sup> @250°C

(AIF<sub>3</sub>/LaF<sub>3</sub>)<sup>13</sup> @250°C



(AIF<sub>3</sub>/LaF<sub>3</sub>)<sup>m</sup>:
✓ higher reflectance
✓ lower stress

Reflectance and mechanical stability will depend on:
Design (number of bilayers)
2. Deposition temperature
3. Substrate

3. Substrate

### 4. Coating materials



(AIF<sub>3</sub>/LaF<sub>3</sub>)<sup>m</sup>:
✓ higher reflectance
✓ lower stress
✓ smaller roughness



Reflectance and mechanical stability will depend on:
1. Design (number of bilayers)
2. Deposition temperature
3. Substrate
4. Coating materials

# **Results: tunable bands in the FUV** @ $\lambda \ge 120$ nm SUMMING UP:





# **Results: tunable bands in the FUV** @ $\lambda \ge 120$ nm SUMMING UP:





- Tuneable in any wavelength λ ≥ 120 nm - FWHM ~ 10 – 20 nm - Reflectance > 85%

# Results: tunable bands in the FUV @ $\lambda \ge 120$ nm Reflectance in the visible and NIR:



# **Results: tunable bands in the FUV** @ $\lambda \ge 120$ nm Ageing in different environments:



Relatively good ageing on different environments

#### Ageing in different environments:



Relatively good ageing on different environments

Angle effect:



At 45° Band shifts ~15 nm Coating can be designed to work at any angle by changing the thicknesses

(AIF3/LaF3)13

#### Angle effect:



At 45° Band shifts ~15 nm Coating can be designed to work at any angle by changing the thicknesses

(AIF3/LaF3)13

Angle effect:



At 45° Band shifts ~15 nm Coating can be designed to work at any angle by changing the thicknesses

(AIF3/LaF3)13

#### Angle effect:



(AIF3/LaF3)13

At 45° Band shifts ~15 nm Coating can be designed to work at any angle by changing the thicknesses



# Results: tunable bands in the FUV @ $\lambda \ge \! 120 \ nm$ Angle effect:



Special design to reduce the band shift with the angle of incidence

# Outline

- Our group
- Motivation:
  - FUV and EUV astronomy
  - Future observatories
- Experimental and facilities
- Results
  - Tunable narrow bands in the FUV
  - Spectral line selection
  - Narrow bands in the LUV
  - Other coatings
- Conclusions

#### Two close lines can mask one another:



- H Ly-α observations in the atmosphere can be masked with the OI geocoronal emission
- OI observations for exoplanet searching can be masked with the strong Ly-α solar emission

#### Two close lines can mask one another:



 H Ly-α observations in the atmosphere can be masked with the OI geocoronal emission

 OI observations for exoplanet searching can be masked with the strong Ly-α solar emission

Design coatings to reflect one  $\lambda$  and to reject a close  $\lambda$ 



aperiodic thickness











• Maximum at the OI doublet (130.4 & 135.6 nm) and minimum at Ly-α (121.6 nm)

Exoplanet observation HD 209458 at OI lines A. Vidal-Madjar et al. 2004



 Maximum at the OI doublet (130.4 & 135.6 nm) and minimum at Ly-α (121.6 nm)

Maximum at Ly-α (121.6 nm)
 and minimum at the OI doublet
 (130.4 & 135.6 nm)

Exoplanet observation HD 209458 at OI lines A. Vidal-Madjar et al. 2004

Proposed GLIDE and SIHLA missions imagining at Ly-α G. D. Krebs, "GLIDE" L. Paxton et al. 2020

# Outline

- Our group
- Motivation:
  - FUV and EUV astronomy
  - Future observatories
- Experimental and facilities
- Results
  - Tunable narrow bands in the FUV
  - Spectral line selection
  - Narrow bands in the LUV
  - Other coatings
- Conclusions

### **Results: narrowbands in the LUV**





Wavelength (nm)



Wavelength (nm)
## **Results: narrowbands in the LUV**



## **Results: narrowbands in the EUV**

- First narrowband coatings peaked close to:
- H Ly β, 102.6 nm
- 0 VI, 103.2, 103.8 nm
- Strong rejection@ 121.6 nm



Rodríguez de Marcos et al. 2018 Optics Express, 2018, 26(19), pp. 25166-25177

## **Results: narrowbands in the EUV/FUV**



## Outline

- Our group
- Motivation:
  - FUV and EUV astronomy
  - Future observatories
- Experimental and facilities
- Results
  - Tunable narrow bands in the FUV
  - Spectral line selection
  - Narrow bands in the LUV
  - Other coatings
- Conclusions

# Results: other coatings, super narrowband filters



#### Supernarrowband filters 120-200 nm+

The selection of fluoride materials in the multilayer can provide multilayers with a reduced bandwidth FWHM 20 nm → 4.5 nm

## Results: other coatings, improved broadband Al mirrors with Ti-seed



Reduction of the reflectance dip when adding a Ti-seed













0.80

**High reflectance** 

broadband mirrors

0.9

Reflectance

0.7

0.6

120

## Outline

- Our group
- Motivation:
  - FUV and EUV astronomy
  - Future observatories
- Experimental and facilities
- Results
  - Tunable narrow bands in the FUV
  - Spectral line selection
  - Narrow bands in the LUV
  - Other coatings
- Conclusions

## Conclusions



- Improved technology on high reflectance filters, broadband mirrors, transmittance filters and polarizers for the FUV and EUV
- Designs in the FUV-EUV to fit the needs of the astrophysics community

## Thank you!



#### **Contact:**

Paloma López Reyes paloma.lopez@csic.es

Juan Larruquert j.larruquert@csic.es



Follow us on twitter! @GOLD\_IO\_LAB

#### https://gold.io.csic.es/



Grupo de Optica de Láminas Delgadas



We acknowledge Agencia Estatal de Investigación for funding this research (Refs. BES-2017-081909, PID2019-105156GB-100)

# **Results: tunable bands in the FUV** @ $\lambda \ge 120$ nm 1. Design: bilayer number

R

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature

3. Substrate

# **Results: tunable bands in the FUV** @ $\lambda \ge 120$ nm 1. Design: bilayer number

R

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature

3. Substrate

## **Results: tunable bands in the FUV** @ $\lambda \ge 120$ nm 1. Design: bilayer number

R

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature

3. Substrate

## 

**R**?

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature

3. Substrate

#### 



- 1. Design (number of bilayers)
  - 2. Deposition temperature

3. Substrate

> ~13 – 15 bilayers is a good trade-off for fluorides in FS

No. of interfaces to increase R Limit no. of interfaces to control cracks and scattering





Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature

3. Substrate

2. Deposition temperature

# Pluorides' density increases R?



L.V. Rodríguez-de Marcos, Optics Express 26: 9363-9372 (2018)

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature 3. Substrate

3. Substrate

2. Deposition temperature

 $\sigma_{therm} = \left(\frac{E}{1-\nu}\right)_{film} \left(\alpha_{sub} - \alpha_{film}\right) (T-T_d)$ 

R? Fluorides' density increases More thermal stress -> more cracks More roughness -> more scattering



L.V. Rodríguez-de Marcos, Optics Express 26: 9363-9372 (2018)

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature 3. Substrate

3. Substrate

2. Deposition temperature

R? Fluorides' density increases



L.V. Rodríguez-de Marcos, Optics Express 26: 9363-9372 (2018)





Find a balance

Reflectance and mechanical stability will depend on:

- 1. Design (number of bilayers)
  - 2. Deposition temperature 3. Substrate
    - 4. Coating materials

### 2. Deposition temperature







