UV SPECTROSCOPY OF MASSIVE STARS

MIRIAM GARCIA ULTRAVIOLET ASTRONOMY IN THE XXI CENTURY

Ačknowledging grants PID2019-105552RB-C41 and MDM-2017-0737 Unidad de Excelencia María de Maeztu - Centro de Astrobiología (CSIC-INTA), funded by MCIN/AEI/10.13039/501100011033

A LARGE TELESCOPE IN SPACE IS NEEDED FOR A FULL VIEW OF MASSIVE STARS ALONG COSMIC HISTORY

MIRIAM GARCIA ULTRAVIOLET ASTRONOMY IN THE XXI CENTURY

Acknowledging grants PID2019-105552RB-C41 and MDM-2017-0737 Unidad de Excelencia María de Maeztu - Centro de Astrobiología (CSIC-INTA), funded by MCIN/AEI/10.13039/501100011033

- Introduction
- Winds of massive stars and UV spectroscopy
- Voyage 2050 proposal
 - A metallicity ladder to look back in time
- Conclusions

INTRODUCTION

LOW-Z MASSIVE STARS AT KEY STAGES OF THE UNIVERSE

LOW-Z MASSIVE STARS AT KEY STAGES OF THE UNIVERSE

MASSIVE STARS ALONG COSMIC HISTORY

+1500 studied stars

(e.g. Bestenlehner+ 2020, Ramachandran+ 2019)

MASSIVE STARS ALONG COSMIC HISTORY

EVOLUTIONARY STAGES OF MASSIVE <u>STARS</u>

EVOLUTIONARY STAGES OF MASSIVE <u>STARS</u>

ROLE OF METALLICITY AND WINDS

Tracks from Brott+ 2011

ROLE OF METALLICITY AND WINDS

Tracks from Brott+ 2011

Groh+ (2019) , vrot=0 , M_{ini} =60 M_{\odot}

HIGH V*ROT* AND WEAK STELLAR WINDS: A NEW CHANNEL OF EVOLUTION AT LOW-Z

CHE = chemically homogeneous evolution

4x production of Ionizing photons of Hell TWUINs have been invoked as ionizing sources to produce intense Hell4686 nebular emission in IZw18 (Kehrig+ 2015), CR7 (Sobral+ 2015)

The evolution and death of metal-poor massive stars ($\leq 1/10Z_{\odot}$) can be very different from MW or Magellanic Clouds analogs, because of their weaker winds.

The characterization of the **winds of massive stars** at the **low metallicity regime** is crucial to compute realistic models of stellar evolution.

These, in turn, are needed to:

- Deciding if CHE is a feasible channel of evolution
- Estimating the production of ionizing fluxes of H and He
- Establishing the links between massive stars and GRB, SNe (map of progenitors)
- Determining how massive stellar-size black holes can form
- Extrapolating the physical properties of the first, metal-free stars of the Universe

RADIATION-DRIVEN WINDS (RDW) AND UV SPECTROSCOPY

DRIVING MECHANISM

Photon scattering: absorption and re-emission of photons

(Castor, Abbott & Klein 1975; Kudritzki & Puls 2000; Puls, Vink & Najarro 2008)

- Intense UV radiation field
- Momentum transfer to metal ions (Fe-group)

DRIVING MECHANISM

Photon scattering: absorption and

(Castor, Abbott & Klein 1975; Kudritzki & Puls 2

- Intense UV radiation field
- Momentum transfer to metal ions (F
- Main parameters:
 - Mass loss rate (M)
 - Terminal velocity (v_∞)

Wind momentum (D_{mom}) –
 Luminosity Relation (WLR):

$$\begin{array}{l} \log \mathsf{D}_{\mathrm{mom}} = \mathsf{log}\mathsf{D}_0 + \mathsf{x} \, \mathsf{log}(\mathsf{L}/\mathsf{L}_{\odot}) \\ \mathsf{D}_{\mathrm{mom}} = \ \dot{\mathbf{M}} \, \mathsf{v}_{\infty} \, (\mathsf{R}_*/\mathsf{R}_{\odot})^{1/2} \end{array}$$

Very metal-poor massive stars can sustain winds as long as they are close to the Eddington limit: radiative acceleration ~ gravity.

See Gräfener+ (2011),

Bestenlehner (2020a)

THE OBSERVATIONAL WLR

UV 900-2000 Å NEEDED TO STUDY LOW-Z WINDS

Optical range

- $V_{\infty} = 2.65 V_{esc}$ Kudritzki & Puls 2000
- $V_{\infty} \propto Z^{0.13}$ Leitherer+ 1992
- Insensitive to low M

Hα 6563Å

Ultraviolet (UV)

FIRST STUDIES OF WINDS IN LOW-Z MASSIVE STARS BEYOND THE SMC: IC1613

- Analysis from the optical range (Hα):
 - Winds are stronger than predicted by theory (Tramper+ 2011, Herrero+ 2011)

Tramper+ 2011, Herrero+ 2011

FIRST STUDIES OF WINDS IN LOW-Z MASSIVE STARS BEYOND THE SMC: IC1613

- Analysis from the optical range (Hα):
 - Winds are stronger than predicted by theory (Tramper+ 2011, Herrero+ 2011)
- HST UV spectroscopy:
 - IC1613 has a higher Fe-group content (≥1/5 Fe_☉) than what would be scaled from nebular abundances (1/7 O_☉)
 - Direct v_{∞} reconciles the tension (Garcia+ 2014)

Tramper+ 2011, Herrero+ 2011

Garcia+ 2014

WIND INHOMOGENEITIES: CLUMPING

- Clumps coexist with the smooth wind.
- To be accounted for geometrically and in the velocity field

ADDITIONAL DIAGNOSTICS IN THE UV-RANGE: FE-GROUP ABUNDANCES

DDITIONAL DIAGNOSTICS IN THE UV-RANGE: **FE-GROUP ABUNDANCES**

ABUNDANCES OF OTHER ELEMENTS AND VSINI

Heap+. 2006 (See also Prinja+ 1990, Penny+ 1996, and works by Bouret+, Martins+).

- The evolution and death of metal-poor massive stars (≤1/10Z_☉) can be very different from MW or Magellanic Clouds analogs.
- The characterization of the winds of massive stars at the low metallicity regime is crucial to compute realistic stellar evolutionary tracks.
- Spectroscopy in space UV (900-2000Å) is needed to characterize radiation-driven winds of low metallicity massive stars.
- The UV contains additional information, some of it exclusive to this range (e.g. Fe-group abundances of O-type stars).

VOYAGE 2050 PROPOSAL

PROGRESS: HR-DIAGRAM AT Z<Z_{SMC}

1/7 O $_{\odot}$: Bresolin+ 2007; Evans+ 2007; Tautvaisiene+ 2007; He Hosek+ 2014; Bouret+ 2015; Camacho 2017, PhD thesis; Ber prep.

Only 6 **1/10 Z_{\odot}** O-type stars have been analyzed due to poor data quality

1/10 Z_o: Camacho+ 2016; Britavskiy+ 2019, Kaufer+ 2004, Telford+ 2021, Lorenzo+2022

UV WIND STUDIES ARE SCARCER

• 10 OB-type stars to study winds at $Z \le 1/10 Z_{\odot}$

	GALAXY	HST-COS SETTING	#targets	ORBITS
Z≤1/1	IC1613 NGC3109	G140L	5 O-stars + 3 B-superg 2 O-stars + 1 B-superg	23 orbits (PI M. Garcia) 18 orbits ULLYSES
	IC1613, WLM	G130M+G160M G130M+G160M	3 O-stars 1 O-star	18 orbits (PI Lanz) 9 orbits (PI Chisholm)
	UZ _☉ SEXT-A	G140L	4 O-stars + 1 B-superg 2 O-stars + 1 B-superg	26 orbits (PI M. Garcia) ULLYSES
	SEXT-A	G130M+G160M	1 O-star	14 orbits (PI Chisholm)
	Leo P	G130M+G160M	1 O-star	26 orbits (PI Chisholm)
	IZw18	G130M, G160M, G185M	Unresolved (4 max.)	~35 orbits (PIs Green -x2-, Aloisi, Wofford)

MASSIVE STARS IN EXTREMELY METAL-POOR GALAXIES: A WINDOW INTO THE PAST

White Paper submitted to ESA's Voyage 2050 call

2040's: THE ERA OF LARGE TELESCOPES IN SPACE

LUMOS:

First multi-object UV spectrograph ever!

LUVOIR-A A 15m UV/Opt/IR telescope in space

<u>White paper, goal-1</u>: Request that ESA joins NASA in this enterprise

LUMOS: LUVOIR ULTRAVIOLET MULTI OBJECT **SPECTROGRAPH**

First UV multi-object spectrograph

ASTRO2020 DECADAL SURVEY RESULTS

2040's: THE ERA OF LARGE TELESCOPES IN SPACE

LUVEX (!?) A 6m UV/Opt/IR telescope in space

LUVEX will reach moderately reddened O-stars in the Local Group and nearby groups.

Improving the detector sensitivity could compensate the mirror downsizing.

WHITE PAPER GOAL-2: PROPOSE AN OPTICAL SPECTROGRAPH FOR LUVOIR

Optical range multi-object spectrograph to profit from LUVOIR's excellent image quality in the **optical range, over a large field of view**.

This will not be accessible to 30m telescopes + AO.

Table 1: Level-zero technical specifications for an optical spectrograph onboard LUVOIR.

Parameter	Value	Justification	
Wavelength coverage	$3600-7000{ m \AA}$	Coverage for Balmer jump, optical diagnostic lines and $H\alpha$	
Resolving power	1 000	Massive stars beyond the Local Group $(\geq 4 \text{ Mpc})$	
$(\lambda/\Delta\lambda)$	8 000	Massive stars in the Local Group (≤ 1.5 Mpc)	
	50000	Other (e.g. SB2 disentangling)	
Faint limit, R=1000	V=25	Bright O-stars in I Zw18	
R = 8000	V=21	Faint O-stars in Sextans A	
Field of view	$3' \times 1.6'$	To match the field of view of LUMOS FUV-MOS	
Observing modes	Single-object		
	Multi-object		
MOS-multiplex	>10.50 optimal	Density of targets in Local Group dIrrs	

Garcia+ 2021, white paper for Voyage 2050

CONCLUSIONS

- Metal-poor massive stars at the early epochs of the Universe may evolve very differently from massive stars today, with potentially great impact on feedback along cosmic history.
- Observational evidence for this problem is extremely scarce.
- Ultraviolet spectroscopy is critical to constrain their radiation-driven winds, which in turn make a fundamental part of evolution.
- A 6m, UV-optimized space telescope with a multi-object UV spectrograph will characterize the winds of metal-poor massive stars, from moderatelyreddened analogs in the Local Group.
- An optical spectrograph (4000-5000Å) to profit from the excellent image quality is needed to completely characterize metal-poor massive stars in crowded regions, a niche inaccessible to AO from the ground.

Thank you!