

Exploring the near-UV for primitive material: from ground based observations, space telescopes, a survey like catalog and Gaia

F. Tinaut-Ruano, E. Tatsumi, J. de León, P. Tanga, F. Vilas, A. Hendrix, J. Licandro, M. Delbo, M. Popescu, F. De Angeli and D. Morate

F. Tinaut acknowledge support from the Agencia Estatal de Investigacion del Ministerio de Ciencia e Innovacion (AEI-MCINN) under grant "Hydrated Minerals and Organic Compounds in Primitive Asteroids" with reference PID2020-120464GB-100.

Also acknowledge the support from the COST Action and the ESA Archival Visitor Programme

By Fernando Tinaut-Ruano ftinaut@iac.es

Observing asteroids

Key points:

- Moving objects
- Reflect light from sun
- Sun not visible at night (not a surprise)
- Solar Analogues

Primitive asteroid reflectance spectra

Key points:

- Pristine building blocks
- Composition of different reservoirs
- Track the water (and other life related components)
- Featureless. Only three possible absorptions.

How we classify asteroids?

Key points:

- Using bands
- Changes in slope

NUV forgotten in the XXI century

Depth of 1µm silicate absorption increases

2002 Bus 0.44–0.92µm

Average spectral slope increases

2019 Bus-DeMeo 0.45–2.45µm

Depth and width of 2µm (pyroxene) absorption band increases up to right Depth and width of 1µm (olivine) absorption band increases down to left

Solar Analogues

What we see from ground:

Tatsumi et al (in prep.)

What we see from ground:

Tatsumi et al (in prep.)

Slope in NUV range (0.37-0.42)

What we see from ground (+HST):

Tatsumi et al (in prep.)

9

● HST ── TNG ── ECAS ── original Gaia ── corrected Gaia

Gaia DR3

- 60000 asteroids with photospectra
- 16 bands from 0.37 to 1.034 microns
- Systematic reddening in our region of interest due to Solar Analog selection.

Tinaut-Ruano et al (submitted) a

Ground compared to space Gaia:

Tinaut-Ruano et al (in prep.) b

What we see from space (Gaia):

Tinaut-Ruano et al (in prep.) b

What we see from space (Cassini):

Tinaut-Ruano et al (in prep.) c

Tinaut-Ruano et al (in prep.) c

14

Conclusions

- Near UV is a key wavelength range to explore in asteroid reflectance spectra and deduce hydration, composition and evolution.
- We have already found a correlation between NUV absorption and the 0.7 microns band, related with hydration, among primitive asteroids with different nature using ground based observations and GAIA.
- We have found another correlation between NUV absorption and the 3 microns band, related with hydration, organics and the topography among the primitive material in lapetus surface.

Gracias!

Thank you!

ftinaut@iac.es