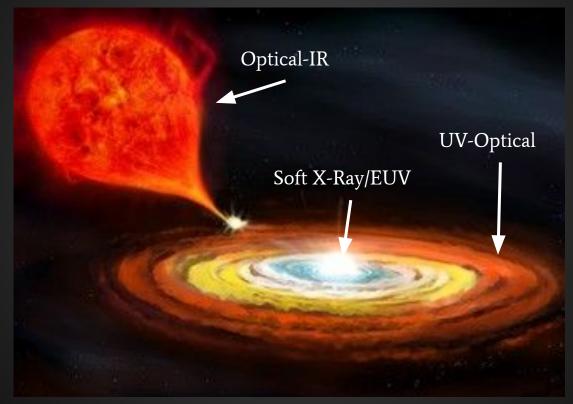
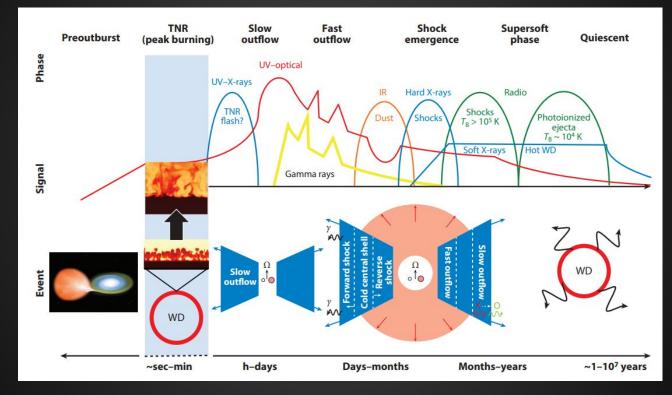
Exploring the Archives: A Search for Novae in UVIT Snapshots of M31


$\bullet \bullet \bullet$

NUVA eMeeting 2024 Judhajeet Basu (PhD Student, IIA)

Collaborators: Krishnendu S., Sudhanshu Barway, Shatakshi Chamoli, G.C.Anupama


15 October 2024

Introduction

Credits: https://www.camk.edu.pl/en/archiwum/2014/10/10/hot-spot-manifestation-eclipcing-dwarf-nova-ht-cas/

Introduction

Credits: Chomiuk et al. Annu. Rev. Astron. Astrophys. 2021. 59:391-444

M31 survey history

Optical

Arp 1956 Rosino 1964, 1973, 1989 Ciardullo et al. 1987 Sharov & Alksnis 1991 Tomaney & Shafter 1992 Rector et al. 1999, 2022 Shafter & Irby 2001; Shafter et al. 2011b Darnley et al. 2004, 2006 Kasliwal et al. 2011 Lee et al. 2012 Williams et al. 2014, 2016.

X-Rays Pietsch et al. 2010 Henze et al. 2010, 2011, 2014.

IR Shafter et al. 2011a

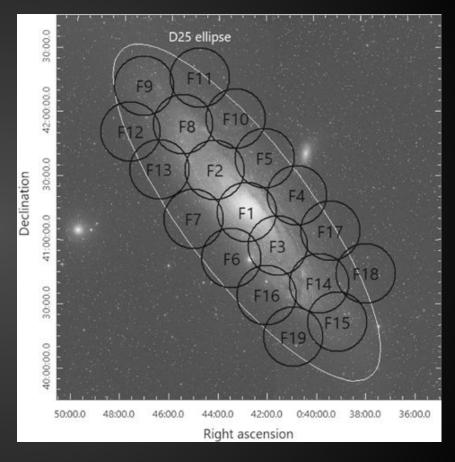
UV Cao et al. 2012

Quiescence studies of M31 novae in optical Williams et al. (2014, 2016)

UV survey history

Galactic novae

Starrfield (1986), Selvelli & Gilmozzi (2013, 2019) studied a sample of 18 galactic novae in quiescence in UV, focusing on their SEDs.

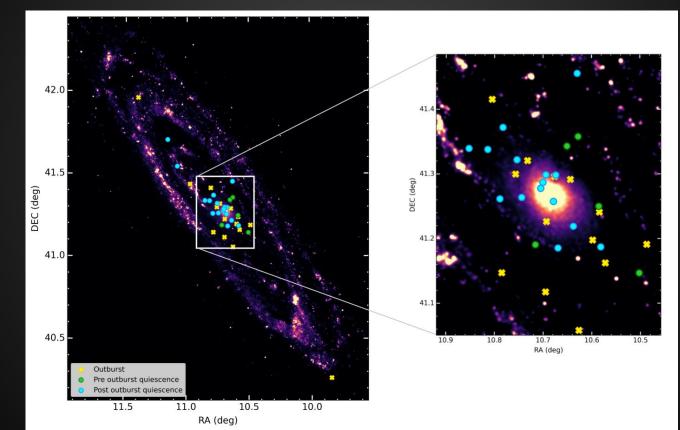

Extra-galactic novae

Lessing et al. 2023; Shara et al. 2023 in **M87** Cao et al. 2012 in **M31** concentrated primarily on eruption characteristics, spatial distribution, nova rates, and population studies

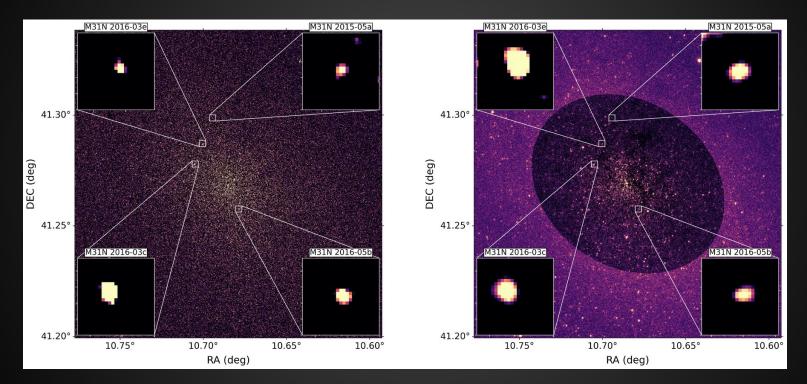
Archival UVIT images \rightarrow Novae captured at different phases

Data and Observations

- PI D. Leahy
- 19 fields
- Different filters in NUV and FUV
- Data span : 2016 2022
- L1 data downloaded and reduced using **CCDLAB**

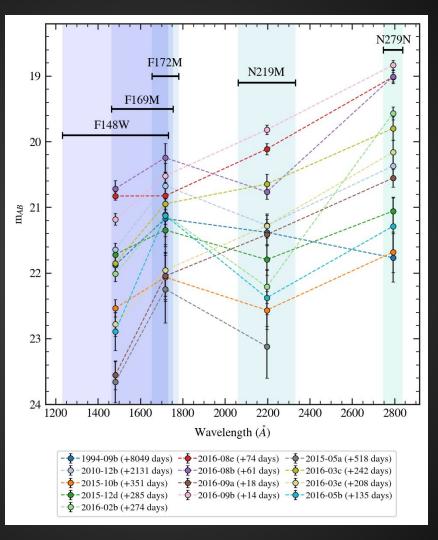


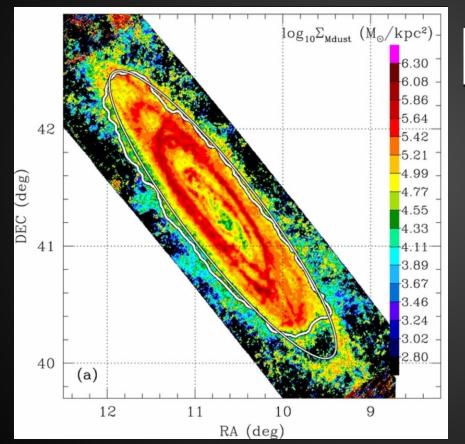
D. A. Leahy et al 2020 ApJS 247 47


Detection method and Photometry

Source detection in image	Aperture and PSF photometry of all sources	Aperture correction term from "good sources"
Forced PSF photometry on novae coordinates	Apply aperture correction	Apply ZP correction
Reject sources at the edges of the fields	Reject sources <3σ	Reject crowded sources within 5" region

Detected novae and spatial distribution For the first time: UV catalog of novae

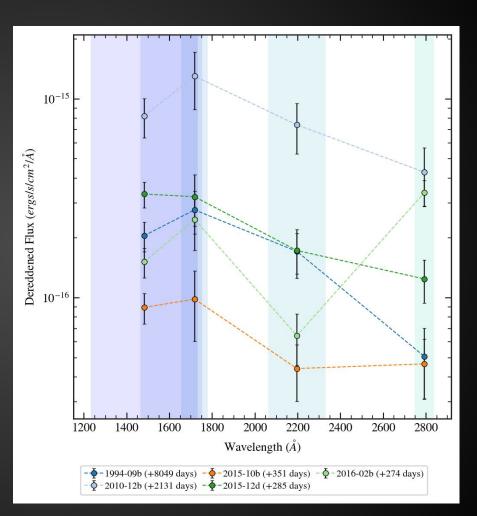

Novae in the central region


Numbers of detections

Total images analyzed	92
Total sources detected	135
Total novae detected	42
Novae detected in outburst	16
Novae detected in both quiescence and outburst	4
Novae detected in quiescence (before eruption)	5
Novae detected in quiescence (after eruption)	21
Novae detected in both FUV and NUV	15

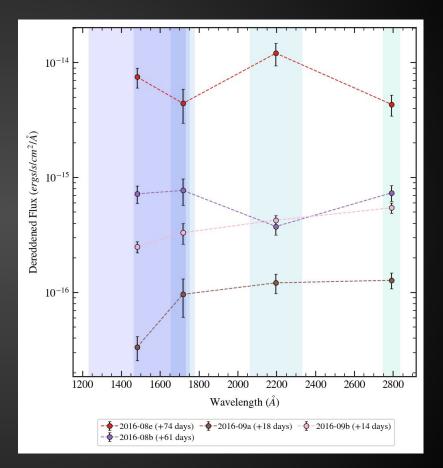
SEDs of novae

Extinction estimation

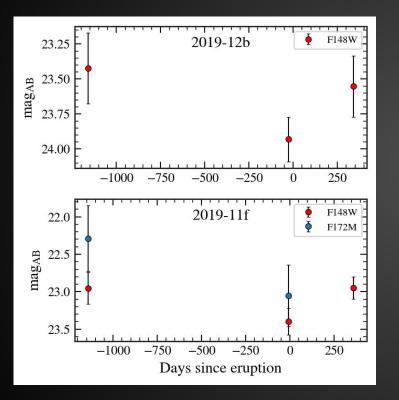

$$A_V = 0.74 \left(rac{\Sigma_{M
m d}}{10^5 \, M_\odot \, {
m kpc}^{-2}}
ight) {
m mag}.$$

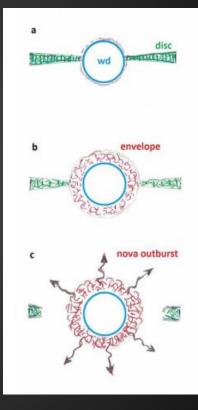
- M31 dust maps from Spitzer Space Telescope and Herschel Space Observatory
- Median dust mass in a 1 arcmin region
- Over-estimation correction factor = 2
- Extinction functions from Cardelli et al. (1989)

SEDs of quiescent novae


 $F_{\lambda} \propto \lambda^{-\alpha}$ $\alpha = 2.33$ for accretion disks

M31N	а	a2
1994-09b	2.71 ± 0.81	3.28 ± 0.79
2010-12b	2.29 ± 0.01	2.29 ± 0.94
2015-10b	2.01 ± 0.96	1.34 ± 1.32
2015-12d	2.15 ± 0.33	1.92 ± 0.82




SEDs of outburst novae

- Close to eruption, SED traces the pseudo-photosphere
- Under-correction could mean the object is away from us wrt the galactic plane
- Over-correction could mean that the object is towards us wrt to the galactic plane

Lightcurves with pre-eruption dips

Summary

- Detected 42 novae in M31 archival UVIT images.
- 4 novae at quiescence show accretion disk signatures.
- 2 novae with multi-epoch data show pre-eruption dips.
- Most quiescent novae show near constant UV magnitude.

Need of survey: Unsolved questions

Poorly constrained nova rates in Milky Way and M31. Inconsistencies between different studies. Testing nova theories: Can we catch the elusive early X-Ray–UV flash?

UV evolution after outburst: Extent of destruction and reformation of accretion disk.

Watch out for the talks on small UV telescopes by the Space Payload Group at IIA

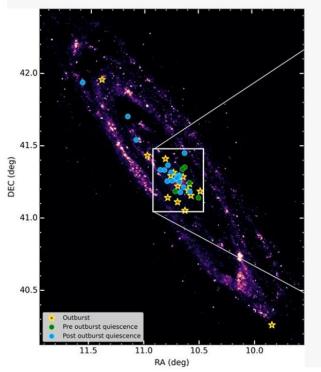
Related paper

THE ASTROPHY

nature > nature india > research highlights > article

RESEARCH HIGHLIGHT | 16 September 2024

nature india


Explosive stars that outshine the Sun

Novae emit ultraviolet light and make life-forming molecules

OPEN ACCESS

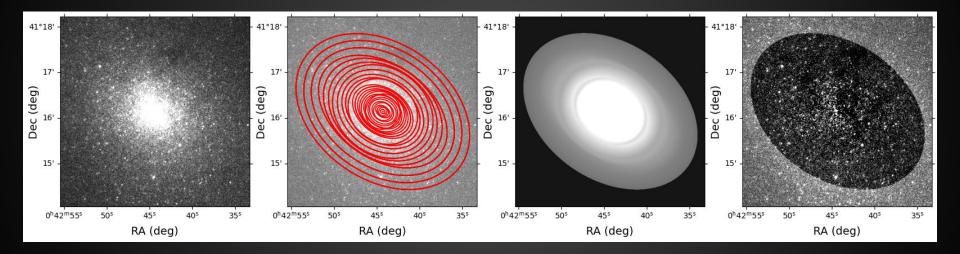
Exploring the Arch Snapshots of M31

Judhajeet Basu^{1,2} (D), Krishner G. C. Anupama¹ (D) Published 2024 August 1 • (C) 2024. <u>The Astrophysical Journal, Volume</u> **Citation** Judhajeet Basu *et al* 2024 **DOI** 10.3847/1538-4357/ad596b

Mosaic image of M31 generated using SWarp. The locations of all the novae detected in the archival images are marked in the figure. Credit: Basu, J. et al 2024 Ap.J 971/ CC BY 4.0

New insights into 'novae', stars that run out of fuel and explode violently, show that some are 10,000 times brighter than the Sun¹.

Located at the centre of the Andromeda galaxy, the stars plunge into a dormant stage before and after such intense activity and emit ultraviolet light.


Summary

- Detected 42 novae in M31 archival UVIT images.
- 4 novae at quiescence show accretion disk signatures.
- 2 novae with multi-epoch data show pre-eruption dips.
- Most quiescent novae show near constant UV magnitude.

Appendix

Image subtraction in the central region

